Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (7): 1593-1604.doi: 10.16182/j.issn1004731x.joss.21-0182
• Modeling Theory and Methodology • Previous Articles Next Articles
Junjie Qiu(), Hong Zheng(), Yunhui Cheng
Received:
2021-03-08
Revised:
2021-06-24
Online:
2022-07-30
Published:
2022-07-20
Contact:
Hong Zheng
E-mail:15995025072@163.com;zhenghong@ecust.edu.cn
CLC Number:
Junjie Qiu, Hong Zheng, Yunhui Cheng. Research on Prediction of Model Based on Multi-scale LSTM[J]. Journal of System Simulation, 2022, 34(7): 1593-1604.
1 | 孔祥伟, 王丹, 吴瑀, 等. 基于堆叠稀疏自编码神经网络的航空发动机剩余寿命预测方法研究[J]. 计算机测量与控制, 2019, 27(12): 29-33, 38. |
Kong Xiangwei, Wang Dan, Wu Yu, et al. Research on Prediction Method of Aeroengine Residual Life Based on Stacked Sparse Automatic Encoder[J]. Computer Measurement & Control, 2019, 27(12): 29-33, 38. | |
2 | 葛承垄, 朱元昌, 邸彦强, 等. 面向装备RUL预测的平行仿真框架[J]. 系统仿真学报, 2018, 30(6): 2216-2224. |
Ge Chenglong, Zhu Yuanchang, Di Yanqiang, et al. Equipment RUL Prediction Oriented Parallel Simulation Framework[J]. Journal of System Simulation, 2018, 30(6): 2216-2224. | |
3 | 温海茹. 基于深度学习的航空发动机剩余使用寿命预测研究[J]. 内燃机与配件, 2020(3): 41-42. |
Wen Hairu. Research on Remaining Life Prediction of Aero-engine Based on Deep Learning[J]. Internal Combustion Engine & Parts, 2020(3): 41-42. | |
4 | 皮骏, 高树伟, 黄江博, 等. 基于QAR数据的涡轮叶片疲劳寿命预测[J]. 系统仿真学报, 2019, 31(6): 1165-1171. |
Pi Jun, Gao Shuwei, Huang Jiangbo, et al. Fatigue Life Prediction of Turbine Blades Based on QAR Data[J]. Journal of System Simulation, 2019, 31(6): 1165-1171. | |
5 | 张朝龙, 何怡刚, 袁莉芬. 基于CPSO-RVM的锂电池剩余寿命预测方法[J]. 系统仿真学报, 2018, 30(5): 1935-1940. |
Zhang Chaolong, He Yigang, Yuan Lifen. Approach for Lithiumion Battery RUL Prognostics Based on CPSO-RVM[J]. Journal of System Simulation, 2018, 30(5): 1935-1940. | |
6 | 赵申坤, 姜潮,龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54(12): 115-124. |
Zhao Shenkun, Jiang Chao, Long Xiangyun. Remaining Useful Life Estimation of Mechanical Systems Based on the Data-driven Method and Bayesian Theory[J]. Journal of Mechanical Engineering, 2018, 54(12): 115-124. | |
7 | 彭鸿博, 蒋雄伟. 基于相关向量机的发动机剩余寿命预测[J]. 科学技术与工程, 2020, 20(18): 7538-7544. |
Peng Hongbo, Jiang Xiongwei. Remaining Useful Life Prediction for Aeroengine Based on Relevance Vector Machine[J]. Science Technology and Engineering, 2020, 20(18): 7538-7544. | |
8 | Qin X L, Zhao Q, Zhao H B, et al. Prognostics of Remaining Useful Life for Lithiumion Batteries Based on a Feature Vector Selection and Relevance Vector Machine Approach[C]// 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, TXUSA: IEEE,2017: 1-6. |
9 | ZHANG C, LIM P, QIN A K, et al. Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics[J]. IEEE Transactions on Neural Networks & Learning Systems (S2162-2388),2016, 28(10): 2306-2318. |
10 | 马忠, 郭建胜, 顾涛勇, 等. 基于改进卷积神经网络的航空发动机剩余寿命预测[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 19-25. |
Ma Zhong, Guo Jiansheng, Gu Taoyong, et al. A Remaining Useful Life Prediction for Aero-Engine Based on Improved Convolution Neural Networks[J]. Journal of Air Force Engineering University(Natural Science Edition), 2020, 21(6): 19-25. | |
11 | Zhang X, Dong Y, Wen L, et al. Remaining Useful Life Estimation Based on a New Convolutional and Recurrent Neural Network[C]// 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019: 317-322. |
12 | Kakati P, Dandotiya D, Pal B. Remaining Useful Life Predictions for Turbofan Engine Degradation Using Online Long Short-Term Memory Network[C]// ASME 2019 Gas Turbine India Conference. Chennai, Tamil Nadu, India: ASME, 2019: 1-7. |
13 | 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. |
Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM Based Recurrent Neural Network for Failure Time Series Prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. | |
14 | Jiang Y, Lü Y, Wang Y, et al. Fusion Network Combined With Bidirectional LSTM Network and Multiscale CNN for Remaining Useful Life Estimation[C]// 2020 12th International Conference on Advanced Computational Intelligence (ICACI). Dali, China: IEEE, 2020: 620-627. |
15 | 王太勇, 王廷虎, 王鹏, 等. 基于注意力机制BiLSTM的设备智能故障诊断方法[J]. 天津大学学报, 2020, 53(6): 601-608. |
Wang Taiyong, Wang Tinghu, Wang Peng, et al. An Intelligent Fault Diagnosis Method Based on Attention-Based Bidirectional LSTM Network[J]. Journal of Tianjin University, 2020, 53(6): 601-608. | |
16 | Babu G S, Zhao P, Li X L. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life[C]// International Conference on Database Systems for Advanced Applications. Berlin, Springer, Cham, 2016: 214-228. |
17 | 王旭, 艾红. 基于CAE与LSTM的航空发动机剩余寿命预测[J]. 北京信息科技大学学报(自然科学版), 2020, 35(4): 57-62. |
Wang Xu, Ai Hong. Prediction of the Remaining Life of Aerospace Engine Based on CAE and LSTM[J]. Journal of Beijing Information Science & Technology University, 2020, 35(4): 57-62. |
[1] | Hailong Zhu, Ruxia Jia, Liang Zhang, Wei He. Turbofan Engine Fault Prediction Based on Evidential Reasoning and Belief Rule Base [J]. Journal of System Simulation, 2022, 34(9): 2074-2086. |
[2] | Weidong Jin, Shuli Zhang, Peng Tang, Man Zhang. Image Dehazing Network Based on Densely Connected Residual Block and Channel Pixel Attention [J]. Journal of System Simulation, 2022, 34(8): 1663-1673. |
[3] | Chunyan Wang, Hao Ren, Minchi Kuang, Danfeng Wu, Xiangshu Cao, Heng Shi. Simulation of Unmanned Tank Clusters Cooperative Combat Based on Military Rules [J]. Journal of System Simulation, 2022, 34(8): 1691-1696. |
[4] | Zheng Yang, Zhimin Xiang, Shiwen Ma. A Method of Loose Coupling Entity Modeling Based on Variable Rules [J]. Journal of System Simulation, 2022, 34(7): 1506-1511. |
[5] | Yin Wang, Feixiang Wang, Qianlai Sun. Vehicle Detection Method Based on Multi Scale Feature Fusion [J]. Journal of System Simulation, 2022, 34(6): 1219-1229. |
[6] | Yejian Zhao, Yanhong Wang, Jun Zhang, Hongxia Yu, Zhongda Tian. Application of Improved Q Learning Algorithm in Job Shop Scheduling Problem [J]. Journal of System Simulation, 2022, 34(6): 1247-1258. |
[7] | Dinghui Wu, Tongrui Zhang, Xiuli Zhang. Job Shop Rescheduling Under Recessive Disturbance Based on Digital Twin [J]. Journal of System Simulation, 2022, 34(3): 573-583. |
[8] | Weiquan Wang, Ding Ding, Linsha Yan. Path-Based Model for the Heterogeneous-Fleet Electric Vehicle Routing Problem with Partial Linear Recharging [J]. Journal of System Simulation, 2022, 34(3): 614-623. |
[9] | Zhao Zheng, Hu Li, Qian Yuanyuan, Jin Hui, Jia Aiping. Research on Optimal Allocation Method of Aircraft Towing Rules Based on Multi-agent [J]. Journal of System Simulation, 2022, 34(1): 113-125. |
[10] | Yanqiang Di, Ting Li, Shaochong Feng, Qiongyao Liu, Jianhong Lü, Zhijia Chen, Yang Zhang, Pengfei Cao. Parallel Simulation System of Equipment Precision Maintenance Based on Cloud-Edge-End Architecture [J]. Journal of System Simulation, 2022, 34(09): 1909-1919. |
[11] | Liu Zhixiong, Qian Hanwen, Yan Jialan. Collaborative Optimization of Ship Stowage Plan and Yard Container Unloading for Container Terminal [J]. Journal of System Simulation, 2021, 33(7): 1689-1698. |
[12] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[13] | Wang Yinsong, Wang Kai. Performance Evaluation Method for Load Control System Considering “Two Detailed Rules” [J]. Journal of System Simulation, 2021, 33(3): 710-720. |
[14] | Yang Weilong, Xu Kai, Xie Xu, Sun Lin. Research on CGF-oriented Virtual Human Perceptual Attention Model [J]. Journal of System Simulation, 2021, 33(2): 262-270. |
[15] | Meng Yangkai, Wang Zheng, Fan Jiali. Scheduling Optimization Research Based on Tabu Algorithm for Uncertainty Carrier Aircraft Support [J]. Journal of System Simulation, 2021, 33(10): 2363-2371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||