Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (7): 1593-1604.doi: 10.16182/j.issn1004731x.joss.21-0182
• Modeling Theory and Methodology • Previous Articles Next Articles
Junjie Qiu(
), Hong Zheng(
), Yunhui Cheng
Received:2021-03-08
Revised:2021-06-24
Online:2022-07-30
Published:2022-07-20
Contact:
Hong Zheng
E-mail:15995025072@163.com;zhenghong@ecust.edu.cn
CLC Number:
Junjie Qiu, Hong Zheng, Yunhui Cheng. Research on Prediction of Model Based on Multi-scale LSTM[J]. Journal of System Simulation, 2022, 34(7): 1593-1604.
| 1 | 孔祥伟, 王丹, 吴瑀, 等. 基于堆叠稀疏自编码神经网络的航空发动机剩余寿命预测方法研究[J]. 计算机测量与控制, 2019, 27(12): 29-33, 38. |
| Kong Xiangwei, Wang Dan, Wu Yu, et al. Research on Prediction Method of Aeroengine Residual Life Based on Stacked Sparse Automatic Encoder[J]. Computer Measurement & Control, 2019, 27(12): 29-33, 38. | |
| 2 | 葛承垄, 朱元昌, 邸彦强, 等. 面向装备RUL预测的平行仿真框架[J]. 系统仿真学报, 2018, 30(6): 2216-2224. |
| Ge Chenglong, Zhu Yuanchang, Di Yanqiang, et al. Equipment RUL Prediction Oriented Parallel Simulation Framework[J]. Journal of System Simulation, 2018, 30(6): 2216-2224. | |
| 3 | 温海茹. 基于深度学习的航空发动机剩余使用寿命预测研究[J]. 内燃机与配件, 2020(3): 41-42. |
| Wen Hairu. Research on Remaining Life Prediction of Aero-engine Based on Deep Learning[J]. Internal Combustion Engine & Parts, 2020(3): 41-42. | |
| 4 | 皮骏, 高树伟, 黄江博, 等. 基于QAR数据的涡轮叶片疲劳寿命预测[J]. 系统仿真学报, 2019, 31(6): 1165-1171. |
| Pi Jun, Gao Shuwei, Huang Jiangbo, et al. Fatigue Life Prediction of Turbine Blades Based on QAR Data[J]. Journal of System Simulation, 2019, 31(6): 1165-1171. | |
| 5 | 张朝龙, 何怡刚, 袁莉芬. 基于CPSO-RVM的锂电池剩余寿命预测方法[J]. 系统仿真学报, 2018, 30(5): 1935-1940. |
| Zhang Chaolong, He Yigang, Yuan Lifen. Approach for Lithiumion Battery RUL Prognostics Based on CPSO-RVM[J]. Journal of System Simulation, 2018, 30(5): 1935-1940. | |
| 6 | 赵申坤, 姜潮,龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54(12): 115-124. |
| Zhao Shenkun, Jiang Chao, Long Xiangyun. Remaining Useful Life Estimation of Mechanical Systems Based on the Data-driven Method and Bayesian Theory[J]. Journal of Mechanical Engineering, 2018, 54(12): 115-124. | |
| 7 | 彭鸿博, 蒋雄伟. 基于相关向量机的发动机剩余寿命预测[J]. 科学技术与工程, 2020, 20(18): 7538-7544. |
| Peng Hongbo, Jiang Xiongwei. Remaining Useful Life Prediction for Aeroengine Based on Relevance Vector Machine[J]. Science Technology and Engineering, 2020, 20(18): 7538-7544. | |
| 8 | Qin X L, Zhao Q, Zhao H B, et al. Prognostics of Remaining Useful Life for Lithiumion Batteries Based on a Feature Vector Selection and Relevance Vector Machine Approach[C]// 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, TXUSA: IEEE,2017: 1-6. |
| 9 | ZHANG C, LIM P, QIN A K, et al. Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics[J]. IEEE Transactions on Neural Networks & Learning Systems (S2162-2388),2016, 28(10): 2306-2318. |
| 10 | 马忠, 郭建胜, 顾涛勇, 等. 基于改进卷积神经网络的航空发动机剩余寿命预测[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 19-25. |
| Ma Zhong, Guo Jiansheng, Gu Taoyong, et al. A Remaining Useful Life Prediction for Aero-Engine Based on Improved Convolution Neural Networks[J]. Journal of Air Force Engineering University(Natural Science Edition), 2020, 21(6): 19-25. | |
| 11 | Zhang X, Dong Y, Wen L, et al. Remaining Useful Life Estimation Based on a New Convolutional and Recurrent Neural Network[C]// 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019: 317-322. |
| 12 | Kakati P, Dandotiya D, Pal B. Remaining Useful Life Predictions for Turbofan Engine Degradation Using Online Long Short-Term Memory Network[C]// ASME 2019 Gas Turbine India Conference. Chennai, Tamil Nadu, India: ASME, 2019: 1-7. |
| 13 | 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. |
| Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM Based Recurrent Neural Network for Failure Time Series Prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. | |
| 14 | Jiang Y, Lü Y, Wang Y, et al. Fusion Network Combined With Bidirectional LSTM Network and Multiscale CNN for Remaining Useful Life Estimation[C]// 2020 12th International Conference on Advanced Computational Intelligence (ICACI). Dali, China: IEEE, 2020: 620-627. |
| 15 | 王太勇, 王廷虎, 王鹏, 等. 基于注意力机制BiLSTM的设备智能故障诊断方法[J]. 天津大学学报, 2020, 53(6): 601-608. |
| Wang Taiyong, Wang Tinghu, Wang Peng, et al. An Intelligent Fault Diagnosis Method Based on Attention-Based Bidirectional LSTM Network[J]. Journal of Tianjin University, 2020, 53(6): 601-608. | |
| 16 | Babu G S, Zhao P, Li X L. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life[C]// International Conference on Database Systems for Advanced Applications. Berlin, Springer, Cham, 2016: 214-228. |
| 17 | 王旭, 艾红. 基于CAE与LSTM的航空发动机剩余寿命预测[J]. 北京信息科技大学学报(自然科学版), 2020, 35(4): 57-62. |
| Wang Xu, Ai Hong. Prediction of the Remaining Life of Aerospace Engine Based on CAE and LSTM[J]. Journal of Beijing Information Science & Technology University, 2020, 35(4): 57-62. |
| [1] | Jiang Ming, He Tao. Solving the Vehicle Routing Problem Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(9): 2177-2187. |
| [2] | Jiang Yanji, Zhang Yingyang, Dong Hao, Zhang Xiaoguang, Wang Meihui. Lane Detection in Dark Light Based on Instance Association [J]. Journal of System Simulation, 2025, 37(9): 2188-2199. |
| [3] | Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection [J]. Journal of System Simulation, 2025, 37(8): 1978-1990. |
| [4] | Liu Zilong, Zhang Lei. Detection of Small Apple Targets Based on Improved YOLOv5 in Natural Environments [J]. Journal of System Simulation, 2025, 37(8): 2124-2138. |
| [5] | Ji Zhicheng, Quan Zhen, Wang Yan. Optimization and Simulation of Adaptive Production Scheduling Based on Hybrid Decision-making Mechanism [J]. Journal of System Simulation, 2025, 37(7): 1791-1803. |
| [6] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
| [7] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
| [8] | Wang Xiang, Tan Guozhen. Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model [J]. Journal of System Simulation, 2025, 37(5): 1246-1255. |
| [9] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
| [10] | Zheng Lanyue, Zhang Yujie. Traffic Signal Detection Based on Improved YOLOv7 [J]. Journal of System Simulation, 2025, 37(4): 993-1007. |
| [11] | Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian. Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2025, 37(2): 474-486. |
| [12] | Liu Jiangong, Zhang Yuanhui, Wei Fei, Wang Yiying, Li Xiaoling, Liu Peiqing, Si Fengmiao. Research on Rule-based Energy Management Strategy of Hybrid Mining Dump Truck [J]. Journal of System Simulation, 2025, 37(2): 487-497. |
| [13] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
| [14] | Zhang Wenkang, Sun Xiaofeng, Zhong Yiping, Yin Yong. Numerical Simulations of Ship Liquid Tank Sloshing Based on Graph Neural Networks [J]. Journal of System Simulation, 2025, 37(12): 3087-3099. |
| [15] | Wu Shuheng, Liu Yongkui, Zhang Lin, Xiao Yingying, Wang Lihui. Lightweight Assembly Workpiece Detection Algorithm Based on Improved YOLOv8 [J]. Journal of System Simulation, 2025, 37(12): 3099-3111. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||