Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (6): 1322-1333.doi: 10.16182/j.issn1004731x.joss.23-0322
• Papers • Previous Articles Next Articles
Lu Yang1(
), Liu Pengfei1, Xu Siyuan1, Liu Qiwang1, Gu Fuqian1, Wang Peng2,3,4
Received:2023-03-21
Revised:2023-05-29
Online:2024-06-28
Published:2024-06-19
CLC Number:
Lu Yang, Liu Pengfei, Xu Siyuan, Liu Qiwang, Gu Fuqian, Wang Peng. Simulation of Rice Disease Recognition Based on Improved Attention Mechanism Embedded in PR-Net Model[J]. Journal of System Simulation, 2024, 36(6): 1322-1333.
Table 1
Relevant parameters of PR-Net structure
| 层名 | 内核 | 步长 | 输出形状 |
|---|---|---|---|
| Input | (None, 256, 256, 3) | ||
| Conv2D_1 | 2 | (None, 128, 128, 128) | |
| MaxPooling2D_1 | 2 | (None, 64, 64, 128) | |
| Conv2D_2 | 1 | (None, 64, 64, 64) | |
| MaxPooling2D_2 | 2 | (None, 32, 32, 64) | |
| PR-Block A | (None, 32, 32, 192) | ||
| PR-Block B | (None, 32, 32, 384) | ||
| PR-Block C | (None, 32, 32, 1280) | ||
| GlobalAveragePooling2D | (None, 1280) | ||
| Softmax | (None, 6) |
Table 3
Comparison of different model training
| 模型 | 训练准确率/% | 训练损失率 | 测试准确率/% | 测试损失率 |
|---|---|---|---|---|
| VGG16 | 99.61 | 0.007 5 | 98.48 | 0.028 3 |
| ResNet50 | 99.82 | 0.054 0 | 98.27 | 0.041 0 |
| InceptionV3 | 99.24 | 0.009 6 | 98.13 | 0.022 2 |
| InceptionResNetV2 | 99.87 | 0.002 4 | 98.51 | 0.020 1 |
| PR-Net | 99.55 | 0.006 0 | 99.10 | 0.013 8 |
| CA + PR-Net | 99.62 | 0.004 9 | 97.03 | 0.035 2 |
| Improved CA + PR-Net | 99.56 | 0.004 7 | 99.27 | 0.007 6 |
| PRC-Net | 99.56 | 0.005 4 | 99.65 | 0.007 3 |
| CA+MobileNetV2 | 99.36 | 0.009 7 | 91.39 | 0.080 5 |
Table 4
Comparison of evaluation of different models
| 模型 | 指标 | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|---|
| VGG16 | 精确率 | 0.97 | 0.97 | 0.97 | 0.99 | 0.99 | 0.99 |
| 召回率 | 0.98 | 0.98 | 0.96 | 0.99 | 0.99 | 0.99 | |
| ResNet50 | 精确率 | 0.98 | 0.98 | 0.99 | 0.97 | 0.99 | 0.97 |
| 召回率 | 0.97 | 0.97 | 0.96 | 0.99 | 0.99 | 1.00 | |
| InceptionV3 | 精确率 | 0.97 | 0.95 | 1.00 | 1.00 | 0.99 | 1.00 |
| 召回率 | 0.98 | 0.98 | 0.90 | 0.99 | 1.00 | 1.00 | |
| Inception-ResNetV2 | 精确率 | 0.98 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 |
| 召回率 | 0.99 | 0.97 | 1.00 | 0.98 | 0.99 | 1.00 | |
| PRC-Net | 精确率 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
| 召回率 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Table 6
Performance comparison of different models
| 模型 | 模型尺寸/MB | 平均迭代时间/min | 总训练时间/min | 推理时间/s |
|---|---|---|---|---|
| VGG16 | 172 | 1.42 | 42.72 | 0.012 |
| ResNet50 | 285 | 1.36 | 40.72 | 0.013 |
| InceptionV3 | 259 | 1.34 | 40.13 | 0.011 |
| Inception-ResNetV2 | 630 | 2.93 | 87.90 | 0.024 |
| PR-Net | 43.8 | 1.02 | 30.72 | 0.008 |
| CA + PR-Net | 44.5 | 1.59 | 47.25 | 0.013 |
| Improved CA+PR-Net | 86.3 | 1.64 | 49.22 | 0.014 |
| PRC-Net | 86.3 | 1.29 | 38.72 | 0.010 |
| 1 | Rusinque Leidy, Maleita Carla, Abrantes Isabel, et al. Meloidogyne Graminicola-A Threat to Rice Production: Review Update on Distribution, Biology, Identification, and Management[J]. Biology, 2021, 10(11): 1163. |
| 2 | Qiu Jing, Lu Xiaolei, Wang Xingxing, et al. Research on Rice Disease Identification Model Based on Migration Learning in VGG Network[J]. IOP Conference Series: Earth and Environmental Science, 2021, 680(1): 012087. |
| 3 | Bashir K, Rehman M, Bari M. Detection and Classification of Rice Diseases: An Automated Approach Using Textural Features[J]. Mehran University Research Journal of Engineering and Technology, 2019, 38(1): 239-250. |
| 4 | Saha S, Ahsan S M M. Rice Disease Detection Using Intensity Moments and Random Forest[C]//2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). Piscataway, NJ, USA: IEEE, 2021: 166-170. |
| 5 | Sharma Vikas, Aftab Ahmad Mir, Sarwr Abid. Detection of Rice Disease Using Bayes' Classifier and Minimum Distance Classifier[J]. Journal of Multimedia Information System, 2020, 7(1): 17-24. |
| 6 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-10-28]. . |
| 7 | He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778. |
| 8 | Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2818-2826. |
| 9 | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[C]//Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2017: 4278-4284. |
| 10 | Niu Zhaoyang, Zhong Guoqiang, Yu Hui. A Review on the Attention Mechanism of Deep Learning[J]. Neurocomputing, 2021, 452: 48-62. |
| 11 | Hughes D P, Salathé Marcel. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics[EB/OL]. (2016-04-12) [2023-01-03]. . |
| 12 | Prabira Kumar Sethy, Negi Baishalee, Nalini Kanta Barpanda, et al. Measurement of Disease Severity of Rice Crop Using Machine Learning and Computational Intelligence[M]//Sasikumar Gurumoorthy, Bangole Narendra Kumar Rao, Gao Xiaozhi. Cognitive Science and Artificial Intelligence: Advances and Applications. Singapore: Springer Singapore, 2018: 1-11. |
| 13 | Shrivastava Vimal K, Pradhan Monoj K. Rice Plant Disease Classification Using Color Features: A Machine Learning Paradigm[J]. Journal of Plant Pathology, 2021, 103(1): 17-26. |
| 14 | Mohapatra Subasish, Marandi Chandan, Sahoo Amlan, et al. Rice Leaf Disease Detection and Classification Using a Deep Neural Network[C]//Computing, Communication and Learning. Cham: Springer Nature Switzerland, 2022: 231-243. |
| 15 | Chen Zhaoyi, Wu Ruhui, Lin Yiyan, et al. Plant Disease Recognition Model Based on Improved YOLOv5[J]. Agronomy, 2022, 12(2): 365. |
| 16 | Chen Junde, Zhang Defu, Zeb Adnan, et al. Identification of Rice Plant Diseases Using Lightweight Attention Networks[J]. Expert Systems with Applications, 2021, 169: 114514. |
| 17 | Jaderberg M, Simonyan K, Zisserman A, et al. Spatial Transformer Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2015: 2017-2025. |
| 18 | Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 13708-13717. |
| 19 | Gulrajani I, Ahmed F, Arjovsky M, et al. Improved Training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 5769-5779. |
| 20 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
| 21 | Woo Sanghyun, Park Jongchan, Young Lee Joon, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
| 22 | Nandhini S, Ashokkumar K. An Automatic Plant Leaf Disease Identification Using DenseNet-121 Architecture with a Mutation-based Henry Gas Solubility Optimization Algorithm[J]. Neural Computing and Applications, 2022, 34(7): 5513-5534. |
| 23 | Poornima Singh Thakur, Sheorey Tanuja, Ojha Aparajita. VGG-ICNN: A Lightweight CNN Model for Crop Disease Identification[J]. Multimedia Tools and Applications, 2023, 82(1): 497-520. |
| [1] | Jiang Ming, He Tao. Solving the Vehicle Routing Problem Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(9): 2177-2187. |
| [2] | Jiang Yanji, Zhang Yingyang, Dong Hao, Zhang Xiaoguang, Wang Meihui. Lane Detection in Dark Light Based on Instance Association [J]. Journal of System Simulation, 2025, 37(9): 2188-2199. |
| [3] | Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection [J]. Journal of System Simulation, 2025, 37(8): 1978-1990. |
| [4] | Liu Zilong, Zhang Lei. Detection of Small Apple Targets Based on Improved YOLOv5 in Natural Environments [J]. Journal of System Simulation, 2025, 37(8): 2124-2138. |
| [5] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
| [6] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
| [7] | Wang Xiang, Tan Guozhen. Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model [J]. Journal of System Simulation, 2025, 37(5): 1246-1255. |
| [8] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
| [9] | Zheng Lanyue, Zhang Yujie. Traffic Signal Detection Based on Improved YOLOv7 [J]. Journal of System Simulation, 2025, 37(4): 993-1007. |
| [10] | Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian. Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2025, 37(2): 474-486. |
| [11] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
| [12] | Zhang Wenkang, Sun Xiaofeng, Zhong Yiping, Yin Yong. Numerical Simulations of Ship Liquid Tank Sloshing Based on Graph Neural Networks [J]. Journal of System Simulation, 2025, 37(12): 3087-3099. |
| [13] | Wu Shuheng, Liu Yongkui, Zhang Lin, Xiao Yingying, Wang Lihui. Lightweight Assembly Workpiece Detection Algorithm Based on Improved YOLOv8 [J]. Journal of System Simulation, 2025, 37(12): 3099-3111. |
| [14] | Tang Jinlin, Wang Yan, Liu Xiang, Wang Tuanjie, Ji Zhicheng. Boolean Network Model Optimization Based on Neural Network and Genetic Programming [J]. Journal of System Simulation, 2025, 37(11): 2812-2825. |
| [15] | Chen Na, Bai Jiajia, Zhou Qiyin, Li Jialin. Image Feature Point Matching Algorithm Based on Attention and Hierarchical Features [J]. Journal of System Simulation, 2025, 37(11): 2839-2852. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||