Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (9): 1931-1947.doi: 10.16182/j.issn1004731x.joss.22-1372
• Papers • Previous Articles Next Articles
Dong Qingqing(), Wu Hao(
), Qian Wenhua, Kong Fengling
Received:
2022-11-17
Revised:
2023-02-03
Online:
2023-09-25
Published:
2023-09-19
Contact:
Wu Hao
E-mail:2239967500@qq.com;haowu1982@vip.163.com
CLC Number:
Dong Qingqing, Wu Hao, Qian Wenhua, Kong Fengling. RGB-D Saliency Object Detection Based on Cross-refinement and Circular Attention[J]. Journal of System Simulation, 2023, 35(9): 1931-1947.
Table 1
Quantitative comparison of proposed method with 11 models in terms of six indicators
数据集 | 指标 | JLDCF | HAINet | CDNet | DSA^2F | JSM | Mobile Sal | DSU | CFIDnet | DCMF | SSL | C2DFnet | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DES | 0.021 | 0.018 | 0.020 | 0.023 | 0.058 | 0.021 | 0.063 | 0.023 | 0.023 | 0.019 | 0.020 | 0.016 | |
0.923 | 0.936 | 0.936 | 0.916 | 0.808 | 0.924 | 0.797 | 0.911 | 0.924 | 0.936 | 0.916 | 0.937 | ||
0.907 | 0.921 | 0.899 | 0.904 | 0.762 | 0.908 | 0.753 | 0.898 | 0.899 | 0.919 | 0.907 | 0.922 | ||
0.889 | 0.910 | 0.863 | 0.889 | 0.742 | 0.896 | 0.682 | 0.886 | 0.879 | 0.908 | 0.898 | 0.910 | ||
0.931 | 0.931 | 0.931 | 0.917 | 0.820 | 0.929 | 0.818 | 0.917 | 0.932 | 0.932 | 0.922 | 0.933 | ||
0.968 | 0.971 | 0.971 | 0.954 | 0.875 | 0.970 | 0.888 | 0.940 | 0.968 | 0.972 | 0.959 | 0.973 | ||
LFSD | 0.070 | 0.079 | 0.088 | 0.055 | 0.127 | 0.080 | 0.129 | 0.071 | 0.069 | 0.079 | 0.065 | 0.070 | |
0.867 | 0.853 | 0.841 | 0.889 | 0.781 | 0.841 | 0.792 | 0.865 | 0.875 | 0.835 | 0.867 | 0.869 | ||
0.848 | 0.842 | 0.822 | 0.879 | 0.757 | 0.825 | 0.759 | 0.850 | 0.847 | 0.826 | 0.859 | 0.859 | ||
0.805 | 0.803 | 0.775 | 0.848 | 0.724 | 0.780 | 0.710 | 0.807 | 0.806 | 0.791 | 0.829 | 0.826 | ||
0.861 | 0.854 | 0.842 | 0.883 | 0.767 | 0.847 | 0.778 | 0.869 | 0.877 | 0.844 | 0.864 | 0.878 | ||
0.902 | 0.886 | 0.877 | 0.924 | 0.833 | 0.888 | 0.842 | 0.903 | 0.909 | 0.879 | 0.903 | 0.913 | ||
NJU2K | 0.036 | 0.038 | 0.060 | 0.040 | 0.133 | 0.047 | 0.135 | 0.038 | 0.051 | 0.043 | 0.035 | 0.029 | |
0.915 | 0.915 | 0.871 | 0.907 | 0.710 | 0.896 | 0.720 | 0.915 | 0.873 | 0.902 | 0.919 | 0.926 | ||
0.902 | 0.903 | 0.847 | 0.898 | 0.673 | 0.875 | 0.683 | 0.899 | 0.868 | 0.887 | 0.897 | 0.916 | ||
0.880 | 0.878 | 0.804 | 0.878 | 0.647 | 0.840 | 0.631 | 0.871 | 0.844 | 0.861 | 0.878 | 0.898 | ||
0.912 | 0.912 | 0.876 | 0.904 | 0.713 | 0.895 | 0.727 | 0.914 | 0.871 | 0.901 | 0.908 | 0.925 | ||
0.950 | 0.944 | 0.911 | 0.938 | 0.801 | 0.932 | 0.805 | 0.946 | 0.915 | 0.938 | 0.943 | 0.956 | ||
SIP | 0.049 | 0.053 | 0.059 | 0.057 | 0.146 | 0.053 | 0.156 | 0.060 | 0.043 | 0.058 | 0.053 | 0.043 | |
0.889 | 0.892 | 0.878 | 0.875 | 0.645 | 0.880 | 0.624 | 0.870 | 0.899 | 0.874 | 0.877 | 0.902 | ||
0.873 | 0.876 | 0.848 | 0.866 | 0.622 | 0.862 | 0.605 | 0.857 | 0.891 | 0.862 | 0.864 | 0.889 | ||
0.845 | 0.845 | 0.805 | 0.840 | 0.562 | 0.834 | 0.520 | 0.829 | 0.872 | 0.841 | 0.834 | 0.866 | ||
0.880 | 0.880 | 0.870 | 0.862 | 0.697 | 0.873 | 0.687 | 0.864 | 0.886 | 0.868 | 0.872 | 0.892 | ||
0.924 | 0.922 | 0.914 | 0.912 | 0.774 | 0.916 | 0.766 | 0.909 | 0.930 | 0.910 | 0.916 | 0.931 | ||
NLPR] | 0.023 | 0.024 | 0.062 | 0.024 | 0.060 | 0.025 | 0.065 | 0.026 | 0.029 | 0.027 | 0.022 | 0.021 | |
0.917 | 0.915 | 0.810 | 0.906 | 0.771 | 0.908 | 0.765 | 0.905 | 0.906 | 0.899 | 0.918 | 0.924 | ||
0.894 | 0.901 | 0.757 | 0.896 | 0.743 | 0.886 | 0.734 | 0.892 | 0.872 | 0.882 | 0.903 | 0.910 | ||
0.866 | 0.877 | 0.684 | 0.873 | 0.706 | 0.858 | 0.652 | 0.867 | 0.836 | 0.859 | 0.882 | 0.890 | ||
0.925 | 0.924 | 0.850 | 0.919 | 0.805 | 0.920 | 0.807 | 0.922 | 0.922 | 0.913 | 0.928 | 0.931 | ||
0.963 | 0.960 | 0.892 | 0.952 | 0.875 | 0.961 | 0.875 | 0.955 | 0.954 | 0.949 | 0.963 | 0.965 | ||
STERE | 0.040 | 0.040 | 0.059 | 0.039 | 0.096 | 0.041 | 0.099 | 0.043 | 0.043 | 0.047 | 0.039 | 0.037 | |
0.904 | 0.906 | 0.870 | 0.900 | 0.772 | 0.895 | 0.779 | 0.897 | 0.906 | 0.883 | 0.897 | 0.907 | ||
0.874 | 0.887 | 0.831 | 0.889 | 0.747 | 0.875 | 0.752 | 0.887 | 0.869 | 0.867 | 0.881 | 0.891 | ||
0.831 | 0.852 | 0.769 | 0.866 | 0.709 | 0.842 | 0.689 | 0.850 | 0.825 | 0.837 | 0.849 | 0.860 | ||
0.903 | 0.907 | 0.871 | 0.898 | 0.783 | 0.903 | 0.789 | 0.901 | 0.910 | 0.885 | 0.902 | 0.908 | ||
0.945 | 0.944 | 0.922 | 0.942 | 0.852 | 0.940 | 0.861 | 0.942 | 0.946 | 0.930 | 0.943 | 0.947 |
Table 2
Quantitative ablation experimental results of proposed method
模型 | SIP | NLPR | STERE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 0.044 | 0.889 | 0.878 | 0.918 | 0.023 | 0.915 | 0.922 | 0.960 | 0.039 | 0.893 | 0.896 | 0.938 |
+MCR | 0.043 | 0.899 | 0.886 | 0.927 | 0.022 | 0.919 | 0.928 | 0.962 | 0.038 | 0.900 | 0.903 | 0.942 |
+RCL | 0.043 | 0.900 | 0.889 | 0.929 | 0.022 | 0.921 | 0.927 | 0.963 | 0.038 | 0.902 | 0.904 | 0.940 |
Ours | 0.043 | 0.902 | 0.892 | 0.931 | 0.021 | 0.924 | 0.931 | 0.965 | 0.037 | 0.907 | 0.908 | 0.947 |
Table 3
Ablation analysis of multi-modal cross-refinement strategy in MCR modules
不同策略的MCR | SIP | NLPR | STERE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cat | 0.044 | 0.898 | 0.891 | 0.931 | 0.022 | 0.924 | 0.929 | 0.963 | 0.037 | 0.906 | 0.908 | 0.946 |
Mul | 0.044 | 0.899 | 0.890 | 0.930 | 0.022 | 0.923 | 0.927 | 0.961 | 0.038 | 0.905 | 0.906 | 0.943 |
Mul+Cat | 0.045 | 0.895 | 0.889 | 0.929 | 0.022 | 0.922 | 0.926 | 0.962 | 0.038 | 0.904 | 0.905 | 0.942 |
Ours | 0.043 | 0.902 | 0.892 | 0.931 | 0.021 | 0.924 | 0.931 | 0.965 | 0.037 | 0.907 | 0.908 | 0.947 |
Table 4
Effectiveness analysis of backbone networks
骨干 网络 | SIP | NLPR | STERE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG11 | 0.047 | 0.879 | 0.869 | 0.882 | 0.027 | 0.909 | 0.911 | 0.955 | 0.043 | 0.873 | 0.876 | 0.918 |
VGG16 | 0.045 | 0.882 | 0.872 | 0.898 | 0.025 | 0.915 | 0.918 | 0.957 | 0.041 | 0.881 | 0.882 | 0.922 |
ResNet34 | 0.044 | 0.899 | 0.890 | 0.925 | 0.024 | 0.922 | 0.929 | 0.960 | 0.039 | 0.899 | 0.900 | 0.939 |
ResNet50 | 0.043 | 0.902 | 0.892 | 0.931 | 0.021 | 0.924 | 0.931 | 0.965 | 0.037 | 0.907 | 0.908 | 0.947 |
1 | Ren Zhixiang, Gao Shenghua, Chia L T, et al. Region-based Saliency Detection and Its Application in Object Recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(5): 769-779. |
2 | Wei Yunchao, Liang Xiaodan, Chen Yunpeng, et al. STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2314-2320. |
3 | Fan Dengping, Cheng Mingming, Liu Yun, et al. Structure-measure: A New Way to Evaluate Foreground Maps[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 4558-4567. |
4 | Mahadevan V, Vasconcelos N. Saliency-based Discriminant Tracking[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2009: 1007-1013. |
5 | Gao Dashan, Han S, Vasconcelos N. Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 989-1005. |
6 | Ciptadi A, Hermans T, Rehg J M. An in Depth View of Saliency[C]//Proceedings of the British Machine Vision Conference. Durham, UK: BMVA Press, 2013: 112.1-112.11. |
7 | Cheng Yupeng, Fu Huazhu, Wei Xingxing, et al. Depth Enhanced Saliency Detection Method[C]//Proceedings of International Conference on Internet Multimedia Computing and Service. New York, NY, USA: Association for Computing Machinery, 2014: 23-27. |
8 | Ren Jianqiang, Gong Xiaojin, Yu Lu, et al. Exploiting Global Priors for RGB-D Saliency Detection[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, NJ, USA: IEEE, 2015: 25-32. |
9 | Song Hangke, Liu Zhi, Xie Yufeng, et al. RGBD Co-saliency Detection Via Bagging-based Clustering[J]. IEEE Signal Processing Letters, 2016, 23(12): 1722- 1726. |
10 | Cong Runmin, Lei Jianjun, Zhang Changqing, et al. Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion[J]. IEEE Signal Processing Letters, 2016, 23(6): 819-823. |
11 | Zhu Chunbiao, Li Ge, Wang Wenmin, et al. An Innovative Salient Object Detection Using Center-dark Channel Prior[C]//2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Piscataway, NJ, USA: IEEE, 2017: 1509-1515. |
12 | Qu Liangqiong, He Shengfeng, Zhang Jiawei, et al. RGBD Salient Object Detection via Deep Fusion[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2274-2285. |
13 | Chen Hao, Li Youfu. Progressively Complementarity- aware Fusion Network for RGB-D Salient Object Detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 3051-3060. |
14 | Liu Zhengyi, Shi Song, Duan Quntao, et al. Salient Object Detection for RGB-D Image by Single Stream Recurrent Convolution Neural Network[J]. Neurocomputing, 2019, 363: 46-57. |
15 | Zhao Jiaxing, Cao Yang, Fan Dengping, et al. Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 3922-3931. |
16 | Fu Keren, Fan Dengping, Ji Gepeng, et al. JL-DCF: Joint Learning and Densely-cooperative Fusion Framework for RGB-D Salient Object Detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 3049-3059. |
17 | Fan Dengping, Lin Zheng, Zhang Zhao, et al. Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-scale Benchmarks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2075-2089. |
18 | Feng Guang, Meng Jinyu, Zhang Lihe, et al. Encoder Deep Interleaved Network with Multi-scale Aggregation for RGB-D Salient Object Detection[J]. Pattern Recognition, 2022, 128: 108666. |
19 | Zhang Miao, Ren Weisong, Yongri Piao, et al. Select, Supplement and Focus for RGB-D Saliency Detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 3469-3478. |
20 | Liu Chang, Yang Gang, Wang Shuo, et al. TANet: Transformer-based Asymmetric Network for RGB-D Salient Object Detection[J]. IET Computer Vision, 2023, 17(4): 415-430. |
21 | Pang Youwei, Zhang Lihe, Zhao Xiaoqi, et al. Hierarchical Dynamic Filtering Network for RGB-D Salient Object Detection[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 235-252. |
22 | Gao Shanghua, Cheng Mingming, Zhao Kai, et al. Res2Net: A New Multi-scale Backbone Architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. |
23 | Zhou Tao, Fu Huazhu, Chen Geng, et al. Specificity-preserving RGB-D Saliency Detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2021: 4661-4671. |
24 | Ronneberger O, Fischer P, Brox T. U-net: Convolutional Networks for Biomedical Image Segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
25 | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
26 | Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2015: 802-810. |
27 | Wei Jun, Wang Shuhui, Huang Qingming. F3Net: Fusion, Feedback and Focus for Salient Object Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2020: 12321-12328. |
28 | Li Nianyi, Ye Jinwei, Ji Yu, et al. Saliency Detection on Light Field[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1605-1616. |
29 | Ju Ran, Liu Yang, Ren Tongwei, et al. Depth-aware Salient Object Detection Using Anisotropic Center-surround Difference[J]. Signal Processing: Image Communication, 2015, 38: 115-126. |
30 | Peng Houwen, Li Bing, Xiong Weihua, et al. RGBD Salient Object Detection: A Benchmark and Algorithms[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 92-109. |
31 | Niu Yuzhen, Geng Yujie, Li Xueqing, et al. Leveraging Stereopsis for Saliency Analysis[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2012: 454-461. |
32 | Margolin R, Zelnik-Manor L, Tal A. How to Evaluate Foreground Maps[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2014: 248-255. |
33 | Fan Dengping, Gong Cheng, Cao Yang, et al. Enhanced-alignment Measure for Binary Foreground Map Evaluation[C]///Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2018: 698-704. |
34 | Achanta R, Sheila Hemami, Estrada F, et al. Frequency-tuned Salient Region Detection[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2009: 1597-1604. |
35 | Russakovsky O, Deng Jia, Su Hao, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
36 | Fu Keren, Fan Dengping, Ji Gepeng, et al. Siamese Network for RGB-D Salient Object Detection and Beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5541-5559. |
37 | Li Gongyang, Liu Zhi, Chen Minyu, et al. Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3528-3542. |
38 | Jin Wenda, Xu Jun, Han Qi, et al. CDNet: Complementary Depth Network for RGB-D Salient Object Detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3376-3390. |
39 | Sun Peng, Zhang Wenhu, Wang Huanyu, et al. Deep RGB-D Saliency Detection with Depth-sensitive Attention and Automatic Multi-modal Fusion[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 1407-1417. |
40 | Li Jingjing, Ji Wei, Bi Qi, et al. Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection[C]//Advances in Neural Information Processing Systems. San Francisco, CA, USA: Curran Associates, Inc., 2021: 11945-11959. |
41 | Wu Yuhuan, Liu Yun, Xu Jun, et al. MobileSal: Extremely Efficient RGB-D Salient Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10261-10269. |
42 | Ji Wei, Li Jingjing, Bi Qi, et al. Promoting Saliency from Depth: Deep Unsupervised RGB-D Saliency Detection[EB/OL]. (2022-05-15) [2022-08-31]. . |
43 | Chen Tianyou, Hu Xiaoguang, Xiao Jin, et al. CFIDNet: Cascaded Feature Interaction Decoder for RGB-D Salient Object Detection[J]. Neural Computing and Applications, 2022, 34(10): 7547-7563. |
44 | Wang Fengyun, Pan Jinshan, Xu Shoukun, et al. Learning Discriminative Cross-modality Features for RGB-D Saliency Detection[J]. IEEE Transactions on Image Processing, 2022, 31: 1285-1297. |
45 | Zhao Xiaoqi, Pang Youwei, Zhang Lihe, et al. Self-Supervised Pretraining for RGB-D Salient Object Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2022: 3463-3471. |
46 | Zhang Miao, Yao Shunyu, Hu Beiqi, et al. C2 DFNet: Criss-cross Dynamic Filter Network for RGB-D Salient Object Detection[J/OL]. IEEE Transactions on Multimedia, 2022: 1-13. (2022-07-01) [2022-09-05]. . |
47 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-09-11]. . |
[1] | Hao Yu, Jinxia Jiang, Xiaohan Lai, Feng Mei, Qing Wang. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network [J]. Journal of System Simulation, 2023, 35(7): 1572-1580. |
[2] | Yun Wei, Qi Luo, Yingzhi Zhao. Semantic Segmentation Model Based on Adaptive Fusion and Attention Refinement [J]. Journal of System Simulation, 2023, 35(6): 1226-1234. |
[3] | Ding Shi, Xuefeng Yan, Lina Gong, Jingxuan Zhang, Donghai Guan, Mingqiang Wei. Multi-agent Cooperative Combat Simulation in Naval Battlefield with Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(4): 786-796. |
[4] | Nan Xiang, Lu Wang, Chongliu Jia, Yuemou Jian, Xiaoxia Ma. Simulation of Occluded Pedestrian Detection Based on Improved YOLO [J]. Journal of System Simulation, 2023, 35(2): 286-299. |
[5] | Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network [J]. Journal of System Simulation, 2023, 35(2): 308-317. |
[6] | Weidong Jin, Shuli Zhang, Peng Tang, Man Zhang. Image Dehazing Network Based on Densely Connected Residual Block and Channel Pixel Attention [J]. Journal of System Simulation, 2022, 34(8): 1663-1673. |
[7] | Junjie Qiu, Hong Zheng, Yunhui Cheng. Research on Prediction of Model Based on Multi-scale LSTM [J]. Journal of System Simulation, 2022, 34(7): 1593-1604. |
[8] | Yin Wang, Feixiang Wang, Qianlai Sun. Vehicle Detection Method Based on Multi Scale Feature Fusion [J]. Journal of System Simulation, 2022, 34(6): 1219-1229. |
[9] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[10] | Yang Weilong, Xu Kai, Xie Xu, Sun Lin. Research on CGF-oriented Virtual Human Perceptual Attention Model [J]. Journal of System Simulation, 2021, 33(2): 262-270. |
[11] | Jiang Mingxin, Pan Zhigeng, WangLanfang, Hu Taoxin. Visual Object Tracking Algorithm Based on Deep Denoising Autoencoder over RGB-D Data [J]. Journal of System Simulation, 2018, 30(11): 4276-4283. |
[12] | Kong Yisi, Hu Xiaofeng, Zhu Feng, Tao Jiuyang. Attention Mechanism in Battlefield Situation Awareness [J]. Journal of System Simulation, 2017, 29(10): 2233-2241. |
[13] | Cai Qiang, Wei Liwei, Li Haisheng, Cao Jian. Object Detection in RGB-D Image Based on ANNet [J]. Journal of System Simulation, 2016, 28(9): 2260-2266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||