Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (2): 308-317.doi: 10.16182/j.issn1004731x.joss.21-0986
• Papers • Previous Articles Next Articles
Hong Sun(), Yuxiang Zhang(
), Yuelan Ling
Received:
2021-09-23
Revised:
2021-12-20
Online:
2023-02-28
Published:
2023-02-16
Contact:
Yuxiang Zhang
E-mail:sunhong@usst.edu.cn;1553944402@qq.com
CLC Number:
Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network[J]. Journal of System Simulation, 2023, 35(2): 308-317.
Table 2
Super-resolution reconstruction results in different scale factors
数据集 | 缩放 因子 | Bicubic (PSNR/SSIM) | SRCNN (PSNR/SSIM) | VDSR (PSNR/SSIM) | DRRN (PSNR/SSIM) | EDSR (PSNR/SSIM) | SRFBN (PSNR/SSIM) | 本文算法 (PSNR/SSIM) |
---|---|---|---|---|---|---|---|---|
Set 5 | ×2 | 33.66/0.930 | 36.66/0.954 | 37.53/0.959 | 37.74/0.959 | 38.11/0.960 | 38.11/0.961 | 38.15/0.961 |
×3 | 30.39/0.868 | 32.75/0.909 | 33.67/0.921 | 34.03/0.924 | 34.65/0.928 | 34.70/0.929 | 34.74/0.929 | |
×4 | 28.42/0.810 | 30.48/0.863 | 31.35/0.883 | 31.68/0.888 | 32.46/0.897 | 32.47/0.8983 | 32.480.899 | |
Set 14 | ×2 | 30.24/0.869 | 33.45/0.907 | 33.05/0.913 | 33.23/0.913 | 33.92/0.920 | 33.82/0.9196 | 33.92/0.919 |
×3 | 27.55 /0.774 | 29.30 /0.822 | 29.78 /0.83 | 29.96/0.835 | 30.52/0.846 | 30.51/0.8461 | 30.56/0.846 | |
×4 | 26.00/0.703 | 27.50/0.751 | 28.02/0.768 | 28.21/0.773 | 28.80/0.787 | 28.81/0.7868 | 28.85/0.788 | |
BSD100 | ×2 | 29.56/0.843 | 31.36/0.888 | 31.90/0.896 | 32.05/0.897 | 32.32/0.901 | 32.29/0.901 | 32.32/0.92 |
×3 | 27.21 /0.739 | 28.41/0.786 | 28.83 /0.799 | 28.95/0.800 | 29.25/0.809 | 29.24/0.808 | 29.26/0.809 | |
×4 | 25.96/0.668 | 26.90/0.710 | 27.29/0.073 | 27.38/0.728 | 27.71/0.742 | 27.72/0.741 | 27.71/0.741 | |
Urban100 | ×2 | 26.88/0.840 | 29.50/0.895 | 30.77/0.914 | 31.23/0.919 | 32.93/0.935 | 32.62/0.9328 | 32.72/0.934 |
×3 | 24.46 /0.735 | 26.24/0.799 | 27.14 /0.829 | 27.53/0.837 | 28.80/0.865 | 28.73/0.8641 | 28.81/0.864 | |
×4 | 23.14/0.658 | 24.52/0.722 | 25.18/0.754 | 25.44/0.764 | 26.64/0.803 | 26.60/0.802 | 26.65/0.803 |
1 | 李新利, 邹昌铭, 杨国田, 等. 基于生成式对抗网络的发票图像超分辨率研究[J]. 系统仿真学报, 2021, 33(6): 1307-1314. |
Li Xinli, Zou Changming, Yang Guotian, et al. Research of Super-resolution Processing of Invoice Image Based on Generative Adversarial Network[J]. Journal of System Simulation, 2021, 33(6): 1307-1314. | |
2 | 胡蕾, 王足根, 陈田, 等. 一种改进的SRGAN红外图像超分辨率重建算法[J].系统仿真学报, 2021, 33(9): 2109-2118. |
Hu Lei, Wang Zugen, Chen Tian, et al. An Improved SRGAN Infrared Image Super-Resolution Reconstruction Algorithm[J]. Journal of System Simulation, 2021, 33(9): 2109-2118. | |
3 | Dong C, Loy C C, He K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2015, 38(2): 295-307. |
4 | Dong Chao, Chen Change Loy, Tang Xiaoou. Accelerating the Super-Resolution Convolutional Neural Network[C]//European Conference on Computer Vision. Las Vegas, USA: Springer, 2016: 391-407. |
5 | Shi W, Caballero J, Huszar F, et al. Real-time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 1874-1883. |
6 | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV: IEEE, 2016: 770-778. |
7 | Kim J, Kwon Lee J, Mu Lee K. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 1646-1654. |
8 | Lim B, Son S, Kim H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI: IEEE, 2017: 136-144. |
9 | Tai Ying, Yang Jian, Liu Xiaoming. Image Super-Resolution Via Deep Recursive Residual Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 3147-3155. |
10 | Zhang Y, Li K, Li K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]//European Conference on Computer Vision(ECCV). Munich, Germany: ECCV, 2018: 286-301. |
11 | Haris M, Shakhnarovich G, Ukita N. Deep Back-Projection Networks for Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673. |
12 | Li Z, Yang J, Liu Z, et al. Feedback Network for Image Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 3867-3876. |
13 | Krizhevsky Alex, Sutskever Ilya, Geoffrey E Hinton. ImageNet Classification with Deep Convolutional Neural Networks[C]//Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, United States, 2012: 1106-1114. |
14 | 程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605-618. |
Cheng Deqiang, Guo Xin, Chen Liangliang, et al. Image Super-resolution Reconstruction from Multi-channel Recursive Residual Network[J]. Journal of Image and Graphics, 2021, 26(3): 605-618. | |
15 | 应自炉, 龙祥. 多尺度密集残差网络的单幅图像超分辨率重建[J]. 中国图象图形学报, 2019, 24(3): 410-419. |
Ying Zilu, Long Xiang. Single-image Super-resolution Construction Based on Multi-scale Dense Residual Network[J]. Journal of Image and Graphics, 2019, 24(3): 410-419. | |
16 | Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141. |
17 | 雷鹏程, 刘丛, 唐坚刚, 等. 分层特征融合注意力网络图像超分辨率重建[J]. 中国图象图形学报, 2020, 25(9): 1773-1786. |
Lei Pengcheng, Liu Cong, Tang Jiangang, et al. Hierarchical Feature Fusion Attention Network for Image Super-resolution Reconstruction[J]. Journal of Image and Graphics, 2020, 25(9): 1773-1786. | |
18 | Li Q, Li Z, Lu L, et al. Gated Multiple Feedback Network for Image Super-Resolution[C]//30th British Machine Vision Conference 2019, Cardiff, UK: BMVA Press, 2019: 188-205. |
19 | 施举鹏, 李静, 陈琰, 等. DFAN:一种基于深度反馈注意力网络的图像超分辨率方法[J]. 小型微型计算机系统, 2021, 42(6): 1206-1212. |
Shi Jupeng, Li Jing, Cheng Yan, et al. DFAN: An Image Super-resolution Method Based on Depth Feedback Attention Network[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1206-1212. | |
20 | Bevilacqua M, Roumy A, Guillemot C, et al. Low-Complexity Singleimage Super-Resolution Based on Nonnegative Neighbor Embedding[C]//2012 British Machine Vision Conference. Durham: BMVA Press, 2012: 135. |
21 | Zeyde R, Elad M, Protter M. On Single Image Scale-up Using Sparserepresentations[C]//7th International Conference on Curves and Surfaces. Berlin: Springer, 2010: 711-730. |
22 | Martin D, Fowlkes C, Tal D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]//2001 Eighth IEEE International Conference on Computer Vision. Canada: IEEE, 2001: 416-423. |
23 | Huang J B, Singh A, Ahuja N. Single Image Super-Resolution from Transformed Self-Exemplars[C]//2015 Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2015: 5197-5206. |
[1] | Nan Xiang, Lu Wang, Chongliu Jia, Yuemou Jian, Xiaoxia Ma. Simulation of Occluded Pedestrian Detection Based on Improved YOLO [J]. Journal of System Simulation, 2023, 35(2): 286-299. |
[2] | Weidong Jin, Shuli Zhang, Peng Tang, Man Zhang. Image Dehazing Network Based on Densely Connected Residual Block and Channel Pixel Attention [J]. Journal of System Simulation, 2022, 34(8): 1663-1673. |
[3] | Junjie Qiu, Hong Zheng, Yunhui Cheng. Research on Prediction of Model Based on Multi-scale LSTM [J]. Journal of System Simulation, 2022, 34(7): 1593-1604. |
[4] | Yin Wang, Feixiang Wang, Qianlai Sun. Vehicle Detection Method Based on Multi Scale Feature Fusion [J]. Journal of System Simulation, 2022, 34(6): 1219-1229. |
[5] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[6] | Yang Weilong, Xu Kai, Xie Xu, Sun Lin. Research on CGF-oriented Virtual Human Perceptual Attention Model [J]. Journal of System Simulation, 2021, 33(2): 262-270. |
[7] | Che Li, Kang Fengju, Hou Xueli. Novel Hierarchical Level of Detail Combinatorial Optimization Method for Large-scale 3D Scene [J]. Journal of System Simulation, 2017, 29(9): 2073-2080. |
[8] | Xin Qi, Zhou Xiao. Simulation of Cooperative Evolution of Growing Network Based on Dynamic Payoff Matrices [J]. Journal of System Simulation, 2017, 29(2): 319-325. |
[9] | Kong Yisi, Hu Xiaofeng, Zhu Feng, Tao Jiuyang. Attention Mechanism in Battlefield Situation Awareness [J]. Journal of System Simulation, 2017, 29(10): 2233-2241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||