Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (2): 308-317.doi: 10.16182/j.issn1004731x.joss.21-0986
• Papers • Previous Articles Next Articles
Hong Sun(
), Yuxiang Zhang(
), Yuelan Ling
Received:2021-09-23
Revised:2021-12-20
Online:2023-02-28
Published:2023-02-16
Contact:
Yuxiang Zhang
E-mail:sunhong@usst.edu.cn;1553944402@qq.com
CLC Number:
Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network[J]. Journal of System Simulation, 2023, 35(2): 308-317.
Table 2
Super-resolution reconstruction results in different scale factors
| 数据集 | 缩放 因子 | Bicubic (PSNR/SSIM) | SRCNN (PSNR/SSIM) | VDSR (PSNR/SSIM) | DRRN (PSNR/SSIM) | EDSR (PSNR/SSIM) | SRFBN (PSNR/SSIM) | 本文算法 (PSNR/SSIM) |
|---|---|---|---|---|---|---|---|---|
| Set 5 | ×2 | 33.66/0.930 | 36.66/0.954 | 37.53/0.959 | 37.74/0.959 | 38.11/0.960 | 38.11/0.961 | 38.15/0.961 |
| ×3 | 30.39/0.868 | 32.75/0.909 | 33.67/0.921 | 34.03/0.924 | 34.65/0.928 | 34.70/0.929 | 34.74/0.929 | |
| ×4 | 28.42/0.810 | 30.48/0.863 | 31.35/0.883 | 31.68/0.888 | 32.46/0.897 | 32.47/0.8983 | 32.480.899 | |
| Set 14 | ×2 | 30.24/0.869 | 33.45/0.907 | 33.05/0.913 | 33.23/0.913 | 33.92/0.920 | 33.82/0.9196 | 33.92/0.919 |
| ×3 | 27.55 /0.774 | 29.30 /0.822 | 29.78 /0.83 | 29.96/0.835 | 30.52/0.846 | 30.51/0.8461 | 30.56/0.846 | |
| ×4 | 26.00/0.703 | 27.50/0.751 | 28.02/0.768 | 28.21/0.773 | 28.80/0.787 | 28.81/0.7868 | 28.85/0.788 | |
| BSD100 | ×2 | 29.56/0.843 | 31.36/0.888 | 31.90/0.896 | 32.05/0.897 | 32.32/0.901 | 32.29/0.901 | 32.32/0.92 |
| ×3 | 27.21 /0.739 | 28.41/0.786 | 28.83 /0.799 | 28.95/0.800 | 29.25/0.809 | 29.24/0.808 | 29.26/0.809 | |
| ×4 | 25.96/0.668 | 26.90/0.710 | 27.29/0.073 | 27.38/0.728 | 27.71/0.742 | 27.72/0.741 | 27.71/0.741 | |
| Urban100 | ×2 | 26.88/0.840 | 29.50/0.895 | 30.77/0.914 | 31.23/0.919 | 32.93/0.935 | 32.62/0.9328 | 32.72/0.934 |
| ×3 | 24.46 /0.735 | 26.24/0.799 | 27.14 /0.829 | 27.53/0.837 | 28.80/0.865 | 28.73/0.8641 | 28.81/0.864 | |
| ×4 | 23.14/0.658 | 24.52/0.722 | 25.18/0.754 | 25.44/0.764 | 26.64/0.803 | 26.60/0.802 | 26.65/0.803 |
| 1 | 李新利, 邹昌铭, 杨国田, 等. 基于生成式对抗网络的发票图像超分辨率研究[J]. 系统仿真学报, 2021, 33(6): 1307-1314. |
| Li Xinli, Zou Changming, Yang Guotian, et al. Research of Super-resolution Processing of Invoice Image Based on Generative Adversarial Network[J]. Journal of System Simulation, 2021, 33(6): 1307-1314. | |
| 2 | 胡蕾, 王足根, 陈田, 等. 一种改进的SRGAN红外图像超分辨率重建算法[J].系统仿真学报, 2021, 33(9): 2109-2118. |
| Hu Lei, Wang Zugen, Chen Tian, et al. An Improved SRGAN Infrared Image Super-Resolution Reconstruction Algorithm[J]. Journal of System Simulation, 2021, 33(9): 2109-2118. | |
| 3 | Dong C, Loy C C, He K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2015, 38(2): 295-307. |
| 4 | Dong Chao, Chen Change Loy, Tang Xiaoou. Accelerating the Super-Resolution Convolutional Neural Network[C]//European Conference on Computer Vision. Las Vegas, USA: Springer, 2016: 391-407. |
| 5 | Shi W, Caballero J, Huszar F, et al. Real-time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 1874-1883. |
| 6 | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV: IEEE, 2016: 770-778. |
| 7 | Kim J, Kwon Lee J, Mu Lee K. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 1646-1654. |
| 8 | Lim B, Son S, Kim H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI: IEEE, 2017: 136-144. |
| 9 | Tai Ying, Yang Jian, Liu Xiaoming. Image Super-Resolution Via Deep Recursive Residual Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 3147-3155. |
| 10 | Zhang Y, Li K, Li K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]//European Conference on Computer Vision(ECCV). Munich, Germany: ECCV, 2018: 286-301. |
| 11 | Haris M, Shakhnarovich G, Ukita N. Deep Back-Projection Networks for Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673. |
| 12 | Li Z, Yang J, Liu Z, et al. Feedback Network for Image Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 3867-3876. |
| 13 | Krizhevsky Alex, Sutskever Ilya, Geoffrey E Hinton. ImageNet Classification with Deep Convolutional Neural Networks[C]//Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, United States, 2012: 1106-1114. |
| 14 | 程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605-618. |
| Cheng Deqiang, Guo Xin, Chen Liangliang, et al. Image Super-resolution Reconstruction from Multi-channel Recursive Residual Network[J]. Journal of Image and Graphics, 2021, 26(3): 605-618. | |
| 15 | 应自炉, 龙祥. 多尺度密集残差网络的单幅图像超分辨率重建[J]. 中国图象图形学报, 2019, 24(3): 410-419. |
| Ying Zilu, Long Xiang. Single-image Super-resolution Construction Based on Multi-scale Dense Residual Network[J]. Journal of Image and Graphics, 2019, 24(3): 410-419. | |
| 16 | Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141. |
| 17 | 雷鹏程, 刘丛, 唐坚刚, 等. 分层特征融合注意力网络图像超分辨率重建[J]. 中国图象图形学报, 2020, 25(9): 1773-1786. |
| Lei Pengcheng, Liu Cong, Tang Jiangang, et al. Hierarchical Feature Fusion Attention Network for Image Super-resolution Reconstruction[J]. Journal of Image and Graphics, 2020, 25(9): 1773-1786. | |
| 18 | Li Q, Li Z, Lu L, et al. Gated Multiple Feedback Network for Image Super-Resolution[C]//30th British Machine Vision Conference 2019, Cardiff, UK: BMVA Press, 2019: 188-205. |
| 19 | 施举鹏, 李静, 陈琰, 等. DFAN:一种基于深度反馈注意力网络的图像超分辨率方法[J]. 小型微型计算机系统, 2021, 42(6): 1206-1212. |
| Shi Jupeng, Li Jing, Cheng Yan, et al. DFAN: An Image Super-resolution Method Based on Depth Feedback Attention Network[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1206-1212. | |
| 20 | Bevilacqua M, Roumy A, Guillemot C, et al. Low-Complexity Singleimage Super-Resolution Based on Nonnegative Neighbor Embedding[C]//2012 British Machine Vision Conference. Durham: BMVA Press, 2012: 135. |
| 21 | Zeyde R, Elad M, Protter M. On Single Image Scale-up Using Sparserepresentations[C]//7th International Conference on Curves and Surfaces. Berlin: Springer, 2010: 711-730. |
| 22 | Martin D, Fowlkes C, Tal D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]//2001 Eighth IEEE International Conference on Computer Vision. Canada: IEEE, 2001: 416-423. |
| 23 | Huang J B, Singh A, Ahuja N. Single Image Super-Resolution from Transformed Self-Exemplars[C]//2015 Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2015: 5197-5206. |
| [1] | Jiang Ming, He Tao. Solving the Vehicle Routing Problem Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(9): 2177-2187. |
| [2] | Jiang Yanji, Zhang Yingyang, Dong Hao, Zhang Xiaoguang, Wang Meihui. Lane Detection in Dark Light Based on Instance Association [J]. Journal of System Simulation, 2025, 37(9): 2188-2199. |
| [3] | Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection [J]. Journal of System Simulation, 2025, 37(8): 1978-1990. |
| [4] | Liu Zilong, Zhang Lei. Detection of Small Apple Targets Based on Improved YOLOv5 in Natural Environments [J]. Journal of System Simulation, 2025, 37(8): 2124-2138. |
| [5] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
| [6] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
| [7] | Wang Xiang, Tan Guozhen. Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model [J]. Journal of System Simulation, 2025, 37(5): 1246-1255. |
| [8] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
| [9] | Zheng Lanyue, Zhang Yujie. Traffic Signal Detection Based on Improved YOLOv7 [J]. Journal of System Simulation, 2025, 37(4): 993-1007. |
| [10] | Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian. Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2025, 37(2): 474-486. |
| [11] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
| [12] | Zhang Wenkang, Sun Xiaofeng, Zhong Yiping, Yin Yong. Numerical Simulations of Ship Liquid Tank Sloshing Based on Graph Neural Networks [J]. Journal of System Simulation, 2025, 37(12): 3087-3099. |
| [13] | Wu Shuheng, Liu Yongkui, Zhang Lin, Xiao Yingying, Wang Lihui. Lightweight Assembly Workpiece Detection Algorithm Based on Improved YOLOv8 [J]. Journal of System Simulation, 2025, 37(12): 3099-3111. |
| [14] | Tang Jinlin, Wang Yan, Liu Xiang, Wang Tuanjie, Ji Zhicheng. Boolean Network Model Optimization Based on Neural Network and Genetic Programming [J]. Journal of System Simulation, 2025, 37(11): 2812-2825. |
| [15] | Chen Na, Bai Jiajia, Zhou Qiyin, Li Jialin. Image Feature Point Matching Algorithm Based on Attention and Hierarchical Features [J]. Journal of System Simulation, 2025, 37(11): 2839-2852. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||