Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (6): 1247-1258.doi: 10.16182/j.issn1004731x.joss.21-0099
• Modeling Theory and Methodology • Previous Articles Next Articles
Yejian Zhao(), Yanhong Wang(
), Jun Zhang, Hongxia Yu, Zhongda Tian
Received:
2021-02-02
Revised:
2021-03-14
Online:
2022-06-30
Published:
2022-06-16
Contact:
Yanhong Wang
E-mail:zhao_yejian@163.com;wangyh_sut@163.com
CLC Number:
Yejian Zhao, Yanhong Wang, Jun Zhang, Hongxia Yu, Zhongda Tian. Application of Improved Q Learning Algorithm in Job Shop Scheduling Problem[J]. Journal of System Simulation, 2022, 34(6): 1247-1258.
Table 7
LA01 scheduling result
规则 | k=0.2 | k=0.4 | k=0.6 | k=0.8 | k=1.0 |
---|---|---|---|---|---|
FCFP | 547.42 | 523.17 | 446.46 | 389.08 | 312.00 |
SPT | 527.12 | 510.67 | 459.66 | 334.18 | 303.10 |
SL | 538.02 | 549.82 | 470.76 | 418.88 | 323.60 |
LOPNR | 563.72 | 605.42 | 447.86 | 405.78 | 299.30 |
MWKR | 542.62 | 531.17 | 475.76 | 381.48 | 301.20 |
Random | 533.12 | 546.12 | 486.96 | 379.58 | 327.00 |
QL | 524.02 | 507.62 | 442.26 | 312.78 | 292.30 |
Table 8
LA05 scheduling result
规则 | k=0.2 | k=0.4 | k=0.6 | k=0.8 | k=1.0 |
---|---|---|---|---|---|
FCFP | 447.54 | 423.75 | 337.52 | 289.06 | 248.00 |
SPT | 468.04 | 456.05 | 321.52 | 277.36 | 230.70 |
SL | 463.74 | 487.63 | 394.72 | 325.66 | 276.50 |
LOPNR | 457.64 | 437.63 | 356.62 | 292.46 | 214.30 |
MWKR | 447.54 | 463.65 | 344.12 | 313.66 | 264.30 |
Random | 483.84 | 445.13 | 359.22 | 293.36 | 274.70 |
QL | 445.84 | 440.85 | 293.42 | 277.26 | 212.30 |
Table 9
LA06 scheduling result
规则 | k=0.2 | k=0.4 | k=0.6 | k=0.8 | k=1.0 |
---|---|---|---|---|---|
FCFP | 702.24 | 720.68 | 522.39 | 426.07 | 485.93 |
SPT | 693.04 | 679.18 | 565.25 | 488.83 | 494.06 |
SL | 759.51 | 745.68 | 623.65 | 572.83 | 529.67 |
LOPNR | 733.84 | 730.18 | 605.79 | 583.73 | 513.67 |
MWKR | 687.44 | 660.88 | 547.65 | 482.63 | 492.06 |
Random | 713.64 | 692.68 | 577.99 | 506.63 | 480.93 |
QL | 684.44 | 653.68 | 521.52 | 423.36 | 474.93 |
Table 11
LA11 scheduling result
规则 | k=0.2 | k=0.4 | k=0.6 | k=0.8 | k=1.0 |
---|---|---|---|---|---|
FCFP | 834.49 | 810.22 | 708.32 | 665.91 | 589.65 |
SPT | 840.44 | 815.32 | 719.22 | 660.31 | 607.80 |
SL | 1 010.44 | 923.82 | 878.37 | 846.31 | 780.10 |
LOPNR | 847.64 | 845.12 | 787.67 | 735.31 | 642.30 |
MWKR | 835.44 | 820.62 | 764.62 | 814.56 | 619.00 |
Random | 886.29 | 876.18 | 736.37 | 759.46 | 703.25 |
QL | 833.24 | 802.42 | 754.82 | 659.36 | 585.70 |
Table 12
LA12 scheduling result
规则 | k=0.2 | k=0.4 | k=0.6 | k=0.8 | k=1.0 |
---|---|---|---|---|---|
FCFP | 675.59 | 663.43 | 680.27 | 574.71 | 471.20 |
SPT | 723.34 | 715.45 | 628.42 | 584.46 | 498.30 |
SL | 921.04 | 876.25 | 798.87 | 702.76 | 632.10 |
LOPNR | 747.84 | 708.75 | 644.17 | 635.71 | 458.40 |
MWKR | 689.54 | 664.35 | 650.82 | 596.61 | 479.30 |
Random | 767.14 | 756.63 | 687.42 | 609.46 | 466.20 |
QL | 670.94 | 643.15 | 627.97 | 565.71 | 452.60 |
Table 14
Comparison of simulation results between improved QL algorithm and traditional optimization algorithms
算例 | 算例规模 | 改进QL算法 | 文献[ | 文献[ | 文献[ |
---|---|---|---|---|---|
LA01 | 10×5 | 442.26 | 736.5 | 736.5 | 736.5 |
LA05 | 10×5 | 395.02 | 765 | 775 | 792 |
LA06 | 15×5 | 521.52 | 849.3 | 850.0 | 867.0 |
LA10 | 15×5 | 515.33 | 944 | 975 | 944 |
LA11 | 20×5 | 754.82 | |||
LA12 | 20×5 | 627.97 | 895 | 923 | 895 |
1 | Applegate D, Cook W. A Computational Study of the Job-Shop Scheduling Problem[J]. Orsa Journal on Computing (S0899-1499), 1991, 3(2): 149-156. |
2 | 郑先鹏, 王雷. 面向作业车间调度问题的遗传算法改进[J]. 河北科技大学学报, 2019, 40(6): 496-502. |
Zheng Xianpeng, Wang Lei. Improved Genetic Algorithm for Job Shop Scheduling[J]. Journal of Hebei University of Science and Technology, 2019, 40(6): 496-502. | |
3 | Ge H W, Sun L, Liang Y C, et al. An Effective PSO and AIS-Based Hybrid Intelligent Algorithm for Job-Shop Scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans(S1083-4427), 2008, 38(2): 358-368. |
4 | Iskander P W. A Survey of Scheduling Rules[J]. Operations Research(S0030-364X), 1977, 25(1): 45-61. |
5 | Jones A, Rabelo L C, Sharawi A T. Survey of Job Shop Scheduling Techniques[M]// Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Inc, 1999. |
6 | Durasevic M, Jakobovic D. A Survey of Dispatching Rules for the Dynamic Unrelated Machines Environment[J]. Expert Systems with Applications(S0957-4174), 2018, 113: 555-569. |
7 | 王东军, 刘翱, 刘克, 等. 基于优先规则的复杂并行机调度问题研究[J]. 系统工程理论与实践, 2016, 36(3):779-786. |
Wang Dongjun, Liu Ao, Liu Ke, et al. Priority Rule-Based Complex Indentical Parallel Machines Scheduling[J]. System Engineering Theory and Practice, 2016, 36(3): 779-786. | |
8 | Holthaus O, Rajendran C. Efficient Dispatching Rules for Scheduling in a Job Shop[J]. International Journal of Production Economics(S0925-5273), 1997, 48(1): 87-105. |
9 | Sutton R S, Barto A G. Reinforcement Learning: An Introduction[J]. IEEE Transactions on Neural Networks(S1045-9227), 1998, 9(5): 1054. |
10 | Jahangirian M, Eldabi T, Naseer A, et al. Simulation in Manufacturing and Business: A Review[J]. European Journal of Operational Research(S0377-2217), 2010, 203(1): 1-13. |
11 | Dorigo M, Colombetti M. Robot Shaping: Developing Autonomous Agents Through Learning[J]. Artificial Intelligence(S0004-3702), 1994, 71(2): 321-370. |
12 | Bouazza W, Sallez Y, Beldjilali B. A Distributed Approach Solving Partially Flexible Job-Shop Scheduling Problem with a Q-learning Effect[J]. Ifac Papersonline(S2405-8963), 2017, 50(1): 15890-15895. |
13 | Shiue Y R, Lee K C, Su C T. Real-Time Scheduling for a Smart Factory Using a Reinforcement Learning Approach[J]. Computers & Industrial Engineering(S0360-8352), 2018, 125: 604-614. |
14 | Wang Yufang. Adaptive Job Shop Scheduling Strategy Based on Weighted Q-Learning Algorithm[J]. Journal of Intelligent Manufacturing (S0956-5515), 2020, 31(2): 417-432. |
15 | Shahrabi J, Adibi M A, Mahootchi M. A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop Scheduling[J]. Computers & Industrial Engineering(S0360-8352), 2017, 110: 75-82. |
16 | Aydin M E, Ztemel E. Dynamic Job-Shop Scheduling Using Reinforcement Learning Agents[J]. Robotics & Autonomous Systems(S0921-8890), 2000, 33(2/3): 169-178. |
17 | Zhao M, Li X, Gao L, et al. An Improved Q-Learning Based Rescheduling Method for Flexible Job-Shops with Machine Failures[C]//2019 IEEE 15th International Conference on Automation Science and Engineering(CASE). Vancouver, Canada: IEEE, 2019: 331-337. |
18 | 张智聪, 郑力. 基于增强学习的制造系统调度[M]. 北京: 科学出版社, 2016. |
Zhang Zhicong, Zheng Li. Manufacturing System Scheduling Based on Reinforcement Learning[M]. Beijing: Science Press, 2016. | |
19 | 肖鹏飞, 张超勇, 孟磊磊, 等. 基于深度强化学习的非置换流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(1): 192-205. |
Xiao Pengfei, Zhang Chaoyong, Meng Leilei, et al. Non-Permutation Flow Shop Scheduling Problem Based on Deep Reinforcement Learning[J]. Computer Intergarted Manufacturing Systems, 2021, 27(1): 192-205. | |
20 | Wei Yingzi, Zhao Mingyang. A Reinforcement Learning-Based Approach to Dynamic Job-Shop Scheduling[J]. Acta Automatica Sinica(S0254-4156), 2005, 31(5): 765-771. |
21 | 刘洪铭, 曾鸿雁, 周伟,等. 基于改进粒子群算法作业车间调度问题的优化[J]. 山东大学学报(工学版), 2019, 49(1): 57-62. |
Liu Hongming, Zeng Hongyan, Zhou Wei, et al. Optimization of Job Shop Scheduling Problem Based on Improved Particle Swarm Algorithm[J]. Journal of Shandong University (Engineering Edition), 2019, 49(1):57-62. | |
22 | 杨恒. 基于改进粒子群算法的作业车间调度优化[J]. 机械设计与制造工程, 2019, 48(2): 77-80. |
Yang Heng. Optimization of Job Shop Scheduling Based on Improved Particle Swarm Algorithm[J]. Mechanical Design and Manufacturing Engineering, 2019, 48(2):77-80. |
[1] | Fatang Chen, Hebin Li, Zhihao Zhang, Zhiqiang Mei. Relative-Residual-Based Dynamic Schedule for Decoding of LDPC Codes [J]. Journal of System Simulation, 2022, 34(9): 1968-1975. |
[2] | Hongliang Zhang, Renman Ding, Gongjie Xu. Energy-Efficient Scheduling of Multi-objective Flexible Job Shop Considering Interval Processing Time [J]. Journal of System Simulation, 2022, 34(9): 1976-1987. |
[3] | Sen Zhang, Mengyan Zhang, Jingping Shao, Jiexin Pu. Multi-UAVs 3D Path Planning Method Based on Random Strategy Search [J]. Journal of System Simulation, 2022, 34(6): 1286-1295. |
[4] | Lingjia Ni, Xiaoxia Huang, Hongga Li, Zibo Zhang. Research on Fire Emergency Evacuation Simulation Based on Cooperative Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(6): 1353-1366. |
[5] | Kui Chen, Li Bi, Wenya Wang. Research on Integrated Scheduling of AGV and Machine in Flexible Job Shop [J]. Journal of System Simulation, 2022, 34(3): 461-469. |
[6] | Hongwei Wang, Peng Yang. Research on Optimization of Airport Cargo Business Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(3): 651-660. |
[7] | Xiaohan Wang, Lin Zhang, Yuanjun Laili, Kunyu Xie, Tingchun Hu. Constructing the Agent Discrete Simulation Based on DEVS Atomic Model [J]. Journal of System Simulation, 2022, 34(2): 191-200. |
[8] | Qirui Li, Xinyi Peng. Job Scheduling and Simulation in Cloud Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(2): 258-268. |
[9] | Wu Xi, Meng Xianglin, Yang Jingyu. Study on Next-generation Strategic Wargame System [J]. Journal of System Simulation, 2021, 33(9): 2017-2024. |
[10] | Zhao Yu, Guo Jifeng, Yan Peng, Bai Chengchao. Self-learning-based Multiple Spacecraft Evasion Decision Making Simulation Under Sparse Reward Condition [J]. Journal of System Simulation, 2021, 33(8): 1766-1774. |
[11] | Chen Kui, Bi Li. Research on FJSP of Improved Particle Swarm Optimization Algorithm Considering Transportation Time [J]. Journal of System Simulation, 2021, 33(4): 845-853. |
[12] | Gao Ang, Dong Zhiming, Zhang Guohui, Liang Tao, Guo Qisheng. Research on Generation Technology of Computer Generated Force in LVC Training System [J]. Journal of System Simulation, 2021, 33(3): 745-752. |
[13] | Wang Xiaohan, Zhang Lin, Ren Lei, Xie Kunyu, Wang Kunyu, Ye Fei, Chen Zhen. Brief Review on Applying Reinforcement Learning to Job Shop Scheduling Problems [J]. Journal of System Simulation, 2021, 33(12): 2782-2791. |
[14] | Zeng Bi, Fang Xiao, Kong Deshuai, Song Xiangxiang, Jia Zhengxuan, Lin Tingyu. A Data-Driven Modeling Method for Game Adversity Agent [J]. Journal of System Simulation, 2021, 33(12): 2838-2845. |
[15] | Ma Jun, Yang Jingyu, Wu Xi. Research on Experimental Method of Joint Operation Simulation Based on Human-machine Hybrid Intelligence [J]. Journal of System Simulation, 2021, 33(10): 2323-2334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||