Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (6): 1230-1246.doi: 10.16182/j.issn1004731x.joss.20-1036
• Modeling Theory and Methodology • Previous Articles Next Articles
Shaomi Duan1,2(), Huilong Luo1(), Haipeng Liu2
Received:
2020-12-23
Revised:
2021-06-14
Online:
2022-06-30
Published:
2022-06-16
Contact:
Huilong Luo
E-mail:dsm_2005@163.com;huilongluo@kmust.edu.cn
CLC Number:
Shaomi Duan, Huilong Luo, Haipeng Liu. A Hybrid Algorithm Based on Seeker Optimization Algorithm and Salp Swarm Algorithm for PID Parameters Optimization[J]. Journal of System Simulation, 2022, 34(6): 1230-1246.
Table 2
Parameters set of algorithms
算法名称 | 参数和设定值 |
---|---|
PSO[ | 惯性常数: 0.9~0.4, 第一加速度系数: 1.496 2, 第二加速度系数: 1.496 2 |
SA_GA[ | 选择概率: 0.6, 交叉概率: 0.7, 变异概率: 0.05, 初始温度: 100, 温度递减系数: 0.98 |
DE[ | 变异概率: 0.6, 交叉概率: 0.09 |
DA[ | s 为分离权重: 0~0.2, a 为对齐权重: 0~0.2,c 为凝聚权重: 0~0.2, f 为食物因子: 0~2,e 为敌情因子: 0~0.1, |
BSO[ | 集群数量: 10, 集群的选择概率: 0.8, 集群中心的选择替换概率: 0.2, 使用中心的概率: 0.4 |
MFO[ | 定义对数螺旋形状的常数: b=1, 随机数: t = -1~1 |
GSA[ | 在第一个宇宙量子区间的引力常数: G0=100, alfa=20,个体与个体间的引力之比为2 |
SCA[ | 随机数组: r1=0~2, r2=0~2π, r3=0~2, r4=0~1 |
SSA[ | 随机数组: r1=0~2, r2=0~1, r3=0~1 |
MVO[ | 虫洞存在概率: WEP_max =1, WEP_min=0.2, 距离移动率: TDR=0~1, 随机数组: r1=0~1,r2=0~1, r3=0~1 |
SOA[ | 最大隶属度值: 0.95, 最小隶属度值: 0.011 1, 最大惯性权重值: 0.8, 最小惯性权重值: 0.2 |
SOA-SSA | 最大隶属度值: 0.95, 最小隶属度值: 0.011 1, 最大惯性权重值: 0.9, 最小惯性权重值: 0.1.随机数组: r1=0~2, r2=0~1, r3=0~1 |
Table 3
Comparison of performance of algorithms in benchmark function of 30 independent runs in high dimension
函数 | 性能 | PSO | SA_GA | DE | DA | BSO | MFO | GSA | SCA | MVO | SSA | SOA | SOA-SSA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f1 | 平均值 | 9.7e+3 | 2.6e+6 | 1.3e+6 | 3.7e+5 | 1.5e+5 | 2.5e+6 | 9.8e+4 | 3.5e+5 | 3.6e+5 | 1.9e+5 | 8.4e+3 | 2.1e+3 |
标准差 | 1.6e+3 | 5.7e+4 | 3.4e+4 | 1.8e+5 | 1.6e+4 | 5.6e+4 | 5.0e+3 | 1.4e+5 | 1.6e+4 | 9.6e+3 | 1.6e+3 | 2.9e+3 | |
最差适应度 | 1.4e+4 | 2.7e+6 | 1.4e+6 | 7.9e+5 | 1.9e+5 | 2.6e+6 | 1.1e+5 | 7.7e+5 | 4.0e+5 | 2.1e+5 | 1.3e+4 | 1.2e+4 | |
最佳适应度 | 7.0e+3 | 2.5e+6 | 1.2e+6 | 1.0e+5 | 1.2e+5 | 2.4e+6 | 8.7e+4 | 4.0e+4 | 3.3e+5 | 1.7e+5 | 4.8e+3 | 12.4 | |
排名 | 3 | 12 | 10 | 6 | 7 | 11 | 5 | 4 | 9 | 8 | 2 | 1 | |
f2 | 平均值 | Inf | Inf | Inf | 1.0e+3 | N/A | Inf | 1.8e+281 | Inf | 1.3e+273 | 1.1e+3 | 7.8e+278 | 78.9 |
标准差 | N/A | N/A | N/A | 3.3e+2 | N/A | N/A | Inf | N/A | Inf | 20.2 | Inf | 6.4 | |
最差适应度 | Inf | Inf | Inf | 1.7e+3 | N/A | Inf | 3.8e+282 | Inf | 4.0e+274 | 1.1e+3 | 2.3e+280 | 95.9 | |
最佳适应度 | 2.9e+2 | Inf | Inf | 3.1e+2 | N/A | Inf | 4.6e+244 | Inf | 2.3e+209 | 1.0e+3 | 2.1e+3 | 67.6 | |
排名 | 2 | 8 | 8 | 3 | 12 | 8 | 7 | 8 | 6 | 4 | 5 | 1 | |
f3 | 平均值 | 3.3e+6 | 3.3e+7 | 6.2e+8 | 2.3e+7 | 1.9e+6 | 1.4e+7 | 2.0e+6 | 2.4e+7 | 6.2e+6 | 4.2e+6 | 2.4e+6 | 7.3e+5 |
标准差 | 1.4e+6 | 1.1e+7 | 1.9e+7 | 6.0e+6 | 4.7e+5 | 2.3e+6 | 8.2e+5 | 4.7e+6 | 4.3e+5 | 1.9e+6 | 7.7e+5 | 3.5e+5 | |
最差适应度 | 8.0e+6 | 8.3e+7 | 6.5e+8 | 3.8e+7 | 3.2e+6 | 1.8e+7 | 4.8e+6 | 3.5e+7 | 7.4e+6 | 8.5e+6 | 4.0e+6 | 1.7e+6 | |
最佳适应度 | 1.7e+6 | 2.0e+7 | 5.7e+8 | 1.1e+7 | 1.2e+6 | 9.2e+6 | 9.6e+5 | 1.4e+7 | 5.5e+6 | 1.5e+6 | 2.0e+5 | 3.8e+3 | |
排名 | 6 | 10 | 12 | 9 | 4 | 8 | 3 | 11 | 7 | 5 | 2 | 1 | |
f4 | 平均值 | 18.3 | 99.5 | 95.1 | 74.0 | 43.0 | 99.4 | 28.7 | 99.5 | 97.4 | 43.9 | 37.6 | 30.5 |
标准差 | 1.3 | 0.2 | 0.3 | 14.4 | 3.4 | 0.2 | 1.8 | 0.1 | 0.7 | 3.0 | 8.8 | 8.1 | |
最差适应度 | 21.5 | 99.8 | 95.6 | 88.6 | 50.5 | 99.8 | 33.7 | 99.7 | 98.8 | 53.5 | 44.9 | 39.5 | |
最佳适应度 | 16.4 | 99.0 | 94.3 | 19.5 | 36.6 | 99.0 | 25.9 | 99.2 | 95.66 | 39.5 | 12.1 | 2.5 | |
排名 | 3 | 10 | 8 | 4 | 6 | 11 | 5 | 12 | 9 | 7 | 2 | 1 | |
f5 | 平均值 | 2.7e+5 | 1.1e+10 | 4.0e+9 | 4.8e+8 | 8.6e+7 | 1.1e+10 | 1.7e+7 | 3.3e+9 | 6.8e+8 | 7.5e+7 | 1.0e+8 | 1.8e+5 |
标准差 | 1.5e+5 | 3.3e+8 | 1.5e+8 | 3.9e+8 | 1.5e+7 | 3.6e+8 | 1.7e+6 | 7.0e+8 | 7.4e+7 | 8.9e+6 | 2.5e+7 | 1.9e+5 | |
最差适应度 | 7.5e+5 | 1.3e+10 | 4.2e+9 | 1.5e+9 | 1.2e+8 | 1.2e+10 | 2.2e+7 | 4.7e+9 | 8.4e+8 | 1.1e+8 | 1.5e+8 | 1.0e+6 | |
最佳适应度 | 1.2e+5 | 1.1e+10 | 3.5e+9 | 1.9e+7 | 5.7e+7 | 1.0e+10 | 1.5e+7 | 2.1e+9 | 5.5e+8 | 6.0e+7 | 6.3e+7 | 2.6e+4 | |
排名 | 2 | 12 | 10 | 4 | 5 | 11 | 3 | 9 | 8 | 6 | 7 | 1 | |
f6 | 平均值 | 1.0e+4 | 2.6e+6 | 1.3e+6 | 2.9e+5 | 1.6e+5 | 2.5e+6 | 9.9e+4 | 4.1e+5 | 3.6e+5 | 1.9e+5 | 8.0e+3 | 7.2e+2 |
标准差 | 1.4e+3 | 4.1e+4 | 3.11e+4 | 1.2e+5 | 1.8e+4 | 4.5e+4 | 4.9e+3 | 1.3e+5 | 1.8e+4 | 1.0e+4 | 1.4e+3 | 1.2e+3 | |
最差适应度 | 1.4e+4 | 2.6e+6 | 1.4e+6 | 5.6e+5 | 2.0e+5 | 2.6e+6 | 1.1e+5 | 7.4e+5 | 4.0e+5 | 2.1e+5 | 1.2e+4 | 4.4e+3 | |
最佳适应度 | 6.2e+3 | 2.5e+6 | 1.2e+6 | 6.2e+4 | 1.2e+5 | 2.4e+6 | 9.1e+4 | 1.6e+5 | 3.2e+5 | 1.7e+5 | 4.8e+3 | 1.6e+2 | |
排名 | 3 | 12 | 10 | 4 | 6 | 11 | 5 | 7 | 9 | 8 | 2 | 1 | |
f7 | 平均值 | 1.1e+2 | 1.8e+5 | 5.2e+4 | 7.9e+3 | 6.6e+3 | 1.7e+5 | 5.3e+3 | 4.8e+4 | 8.7e+3 | 1.1e+3 | 2.0e+4 | 3.3e+2 |
标准差 | 22.3 | 6.1e+3 | 2.9e+3 | 5.9e+3 | 2.1e+3 | 5.9e+3 | 5.8e+2 | 1.1e+4 | 771.6 | 129.1 | 2.7e+3 | 54.4 | |
最差适应度 | 1.7e+2 | 1.9e+5 | 5.9e+4 | 2.0e+4 | 1.3e+4 | 1.8e+5 | 6.9e+3 | 7.0e+4 | 1.1e+4 | 1.34e+3 | 2.6e+4 | 4.6e+2 | |
最佳适应度 | 81.0 | 1.7e+5 | 4.7e+4 | 667.2 | 3.2e+3 | 1.6e+5 | 4.4e+3 | 2.7e+4 | 7.3e+3 | 878.7 | 1.4e+4 | 2.1e+2 | |
排名 | 1 | 12 | 10 | 3 | 5 | 11 | 6 | 9 | 7 | 4 | 8 | 2 | |
f8 | 平均值 | 4.7e+4 | 1.3e+7 | 6.2e+6 | 1.9e+6 | 1.4e+6 | 1.2e+7 | 3.9e+5 | 1.8e+6 | 1.5e+6 | 8.6e+5 | 1.6e+6 | 6.4e+3 |
标准差 | 6.6e+3 | 3.6e+5 | 1.9e+5 | 9.6e+5 | 1.6e+5 | 3.0e+5 | 2.2e+4 | 5.6e+5 | 6.5e+4 | 5.2e+4 | 1.1e+5 | 1.7e+3 | |
最差适应度 | 6.1e+4 | 1.3e+7 | 6.9e+6 | 3.8e+6 | 1.6e+6 | 1.26e+7 | 4.4e+5 | 2.7e+6 | 1.7e+6 | 9.9e+5 | 1.9e+6 | 1.1e+4 | |
最佳适应度 | 3.7e+4 | 1.1e+7 | 6.0e+6 | 6.5e+5 | 1.01e+6 | 1.1e+7 | 3.5e+5 | 4.5e+5 | 1.4e+6 | 7.9e+5 | 1.3e+6 | 3.2e+3 | |
排名 | 2 | 12 | 10 | 5 | 7 | 11 | 3 | 4 | 9 | 6 | 8 | 1 | |
f9 | 平均值 | 9.8e-9 | 1.6e+92 | 5.0e+55 | 4.8e+27 | N/A | 2.0e+90 | 7.7e-5 | 9.1e+83 | 1.0e+56 | 1.7e-6 | 1.4e+12 | 6.1e-8 |
标准差 | 3.e-8 | 7.4e+92 | 1.0e+56 | 2.6e+28 | N/A | 1.1e+91 | 2. 6e-4 | 4.7e+84 | 5.5e+56 | 1.3e-6 | 5.5e+12 | 5.9e-8 | |
最差适应度 | 1.5e-7 | 4.0e+93 | 4.1e+56 | 1.4e+29 | N/A | 5.9e+91 | 1.3e-3 | 2.6e+85 | 3.0e+57 | 5.3e-6 | 2.6e+13 | 2.8e-7 | |
最佳适应度 | 5.5e-16 | 1.1e+7 | 1.5e+48 | 4.8e-4 | N/A | 2.3e+74 | 2.0e-9 | 9.3e+69 | 5.6e+38 | 4.1e-7 | 2.4e-2 | 7.7e-9 | |
排名 | 1 | 7 | 9 | 5 | 12 | 11 | 2 | 10 | 8 | 4 | 6 | 3 | |
f10 | 平均值 | -1.7e+4 | -5.8e+4 | -6.0e+4 | -3.2e+4 | -6.6e+4 | -1.1e+5 | -1.5e+4 | -2.3e+4 | -1.3e+5 | -1.2e+5 | -1.3e+5 | -1.6e+5 |
标准差 | 2.6e+3 | 3.4e+3 | 1.7e+3 | 4.9e+3 | 4.3e+3 | 8.8e+3 | 2.3e+3 | 1.4e+3 | 6.0e+3 | 6.9e+3 | 2.7e+4 | 5.5e+4 | |
最差适应度 | -1.0e+4 | -5.3e+4 | -5.7e+4 | -2.4e+4 | -5.5e+4 | -9.4e+4 | -1.1e+4 | -2.0e+4 | -1.2e+5 | -1.18e+5 | -9.1e+4 | -1.1e+5 | |
最佳适应度 | -2.2e+4 | -6.7e+4 | -6.5e+4 | -4.2e+4 | -7.4e+4 | -1.3e+5 | -1.8e+4 | -2.7e+4 | -1.5e+5 | -1.4e+5 | -2.0e+5 | -3.7e+5 | |
排名 | 11 | 7 | 8 | 9 | 6 | 5 | 12 | 10 | 3 | 4 | 2 | 1 | |
f11 | 平均值 | 2.8e+3 | 1.6e+4 | 1.3e+4 | 94e+3 | 9.4e+3 | 1.5e+4 | 5.8e+3 | 1.8e+3 | 1.4e+4 | 6.3e+3 | 10.0e+3 | 1.3e+3 |
标准差 | 1.7e+2 | 1.4e+2 | 84.5 | 1.2e+3 | 2.0e+2 | 2.4e+2 | 1.6e+2 | 8.7e+2 | 3.0e+2 | 1.6e+2 | 3.1e+2 | 3.8e+2 | |
最差适应度 | 3.3e+3 | 1.6e+4 | 1.3e+4 | 1.1e+4 | 9.8e+3 | 1.5e+4 | 6.0e+3 | 3.9e+3 | 1.4e+4 | 6.7e+3 | 1.1e+4 | 2.2e+3 | |
最佳适应度 | 2.5e+3 | 1.5e+4 | 1.3e+4 | 7.0e+3 | 9.1e+3 | 1.4e+4 | 5.4e+3 | 5.0e+2 | 1.3e+4 | 6.1e+3 | 9.4e+3 | 8.4e+2 | |
排名 | 3 | 12 | 9 | 6 | 7 | 11 | 4 | 1 | 10 | 5 | 8 | 2 | |
f12 | 平均值 | 4.5 | 20.8 | 19.8 | 15.5 | 14.4 | 20.2 | 10.3 | 18.9 | 20.9 | 14.4 | 10.4 | 4.6 |
标准差 | 0.2 | 0.03 | 0.06 | 1.9 | 0.4 | 0.2 | 0.2 | 4.0 | 0.02 | 0.2 | 0.6 | 3.9 | |
最差适应度 | 5.1 | 20.9 | 19.9 | 18.7 | 15.2 | 20.5 | 10.6 | 20.8 | 21.0 | 14.8 | 11.1 | 11.5 | |
最佳适应度 | 4.2 | 20.7 | 19.7 | 11.4 | 13.5 | 20.0 | 9.9 | 8.5 | 20.9 | 14.0 | 9.2 | 0.8 | |
排名 | 2 | 11 | 9 | 6 | 7 | 10 | 5 | 3 | 12 | 8 | 4 | 1 | |
平均排名 | 3.0 | 10.7 | 9.5 | 5.4 | 6.8 | 10.2 | 5.1 | 7.4 | 8.1 | 5.7 | 4.4 | 1.4 | |
总体排名 | 2 | 12 | 10 | 6 | 7 | 11 | 5 | 8 | 9 | 4 | 3 | 1 | |
Table 4
Comparison of performance of algorithms in PID controller parameter optimization of 30 independent runs
函数 | 性能 | PSO | SA_GA | DE | DA | BSO | MFO | GSA | SCA | SSA | MVO | SOA | SOA-SSA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g1 | 平均值 | 0.22 | 0.31 | 0.26 | 0.14 | 0.43 | 0.07 | 0.45 | 0.09 | 0.06 | 0.25 | 0.19 | 0.05 |
标准差 | 0.08 | 0.06 | 0.09 | 0.08 | 0.14 | 0.02 | 0.15 | 0.02 | 0.05 | 0.05 | 0.11 | 0.00 | |
最差适应度 | 0.42 | 0.43 | 0.47 | 0.30 | 0.88 | 0.11 | 0.86 | 0.11 | 0.33 | 0.26 | 0.42 | 0.06 | |
最佳适应度 | 0.04 | 0.10 | 0.06 | 0.05 | 0.26 | 0.04 | 0.27 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | |
排名 | 5 | 10 | 9 | 6 | 11 | 3 | 12 | 4 | 2 | 7 | 8 | 1 | |
g2 | 平均值 | 0.35 | 0.50 | 0.50 | 0.29 | 0.68 | 0.10 | 0.64 | 0.10 | 0.26 | 0.39 | 0.28 | 0.10 |
标准差 | 0.20 | 0.10 | 0.09 | 0.21 | 0.15 | 4.7e-4 | 0.12 | 8.77e-4 | 0.21 | 0.19 | 0.18 | 0.00 | |
最差适应度 | 0.54 | 0.61 | 0.61 | 0.54 | 1.04 | 0.10 | 0.96 | 0.10 | 0.54 | 0.53 | 0.53 | 0.12 | |
最佳适应度 | 0.10 | 0.15 | 0.25 | 0.10 | 0.39 | 0.09 | 0.38 | 0.10 | 0.09 | 0.10 | 0.09 | 0.09 | |
排名 | 8 | 9 | 10 | 5 | 12 | 3 | 11 | 5 | 1 | 5 | 4 | 2 | |
g3 | 平均值 | 58.47 | 62.45 | 60.91 | 58.15 | 62.43 | 52.35 | 60.77 | 24.84 | 30.96 | 59.58 | 42.15 | 11.06 |
标准差 | 7.75 | 0.12 | 4.01 | 9.55 | 0.80 | 16.91 | 5.30 | 21.52 | 29.63 | 7.65 | 27.90 | 18.68 | |
最差适应度 | 62.59 | 62.61 | 62.84 | 62.49 | 63.08 | 62.50 | 64.14 | 62.52 | 62.58 | 62.50 | 62.54 | 56.82 | |
最佳适应度 | 36.04 | 62.03 | 42.65 | 14.36 | 58.30 | 7.47 | 42.77 | 0.48 | 0.33 | 32.60 | 0.39 | 0.30 | |
排名 | 8 | 12 | 9 | 6 | 11 | 5 | 10 | 4 | 2 | 7 | 3 | 1 | |
g4 | 平均值 | 1.85e+2 | 2.72e+2 | 2.71e+2 | 1.35e+2 | 2.72e+2 | 39.95 | 2.77e+2 | 29.04 | 41.75 | 1.09e+2 | 2.62e+2 | 12.39 |
标准差 | 59.64 | 0.62 | 0.37 | 71.50 | 5.5362 | 47.83 | 10.30 | 11.98 | 40.96 | 56.67 | 44.81 | 2.72 | |
最差适应度 | 3.15e+2 | 2.74e+2 | 2.72e+2 | 1.98e+2 | 2.80e+2 | 1.98e+2 | 3.16e+2 | 50.00 | 1.50e+2 | 1.96e+2 | 2.75e+2 | 18.36 | |
最佳适应度 | 32.54 | 2.71 | 2.70e+2 | 24.91 | 2.44e+2 | 13.17 | 2.71e+2 | 14.55 | 9.10 | 20.04 | 26.57 | 8.89 | |
排名 | 9 | 1 | 11 | 7 | 10 | 4 | 12 | 5 | 3 | 6 | 8 | 2 | |
g5 | 平均值 | 1.77e+2 | 55.35 | 93.24 | 81.65 | 41.44 | 35.07 | 2.34e+2 | 85.19 | 64.19 | 35.72 | 46.10 | 35.20 |
标准差 | 4.22e+2 | 36.00 | 40.91 | 79.81 | 11.38 | 0.40 | 2.18e+2 | 1.01e+2 | 41.70 | 1.41 | 26.99 | 0.80 | |
最差适应度 | 2.13e+3 | 163.65 | 1.96e+2 | 3.65e+2 | 90.50 | 36.33 | 1.15e+3 | 4.20e+2 | 2.10e+2 | 41.28 | 1.85e+2 | 37.71 | |
最佳适应度 | 34.62 | 34.62 | 40.23 | 34.63 | 35.04 | 34.63 | 58.32 | 34.86 | 34.62 | 34.64 | 34.74 | 34.62 | |
排名 | 2 | 4 | 11 | 6 | 10 | 5 | 12 | 9 | 3 | 7 | 8 | 1 | |
平均排名 | 6.4 | 7.2 | 10 | 6 | 10.8 | 4 | 11.4 | 5.4 | 2.2 | 6.4 | 6.2 | 1.4 | |
总体排名 | 7 | 9 | 10 | 5 | 11 | 3 | 12 | 4 | 2 | 7 | 6 | 1 |
1 | Mirjalili Seyedali. Dragon fly Algorithm: A New Metaheuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems[J]. Neural Computing and Applications(S0941-0643), 2015, 29: 1-21. |
2 | Shi Y. An Optimization Algorithm Based on Brainstorming Process[J]. International Journal of Swarm Intelligence Research(S1947-9263), 2011, 2(4): 35-62. |
3 | Mirjalili Seyedali. Moth Flame Optimization Algorithm: A Novel Nature-inspired Heuristic Paradigm[J]. Knowledge-Based Systems(S0950-7051), 2015, 89: 228-249. |
4 | Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A Gravitational Search Algorithm[J]. Information Sciences(S0020-025), 2009, 179(13): 2232-2248. |
5 | Mirjalilia Seyedali. SCA: A Sine Cosine Algorithm for Solving Optimization Problems[J]. Knowledge-Based Systems(S0950-7051), 2016, 96: 120-133. |
6 | Mirjalili S, Mirjalili S M, Hatamlou A. Multi-Verse Optimizer: A Nature-Inspired Algorithm for Global Optimization[J]. Neural Computing and Applications(S0941-0643), 2016, 27: 495-513. |
7 | Mirjalili Seyedal, Gandomi Amir H, Seyedeh Zahra Mirjalili. Salp Swarm Algorithm: A Bio-inspired Optimizer for Engineering Design Problems[J]. Advances in Engineering Software(S0965-9978), 2017, 114: 163-191. |
8 | Tuba M, Brajevic I, Jovanovic R. Hybrid Seeker Optimization Algorithm for Global Optimization[J]. Applied Mathematics & Information Sciences(S1935-0090), 2013, 7(3): 867-875. |
9 | 余玉丰, 李国, 徐晨. 基于分组的PSO与DE的混合算法[J]. 计算机应用研究, 2014, 31(8): 2294-2298. |
Yu Yufeng, Li Guo, Xu Chen. Hybrid Algorithm Based on Grouped PSO and DE[J]. Application Research of Computers, 2014, 31(8): 2294-2298. | |
10 | 白书华, 况明星. 基于PSO-GA-BP神经网络的林火预测设计与研究[J]. 系统仿真学报, 2018, 30(5): 1739-1748. |
Bai Shuhua, Kuang Mingxing. Design and Study of Forest Fire Forecasting Based on PSO-GA-BP Neural Network[J]. Journal of System Simulation, 2018, 30(5): 1739-1748. | |
11 | 王修岩, 刘艳敏, 张革文, 等. 基于PSO和CRO联合算法的飞机客舱能耗预测[J]. 系统仿真学报, 2018, 30(8): 3074-3081. |
Wang Xiuyan, Liu Yanmin, Zhang Gewen, et al. Prediction of Aircraft Cabin Energy Consumption Based on PSO and CRO Algorithms[J]. Journal of System Simulation, 2018, 30(8): 3074-3081. | |
12 | 卿东升, 张晓芳, 李建军, 等. 基于蜂群-粒子群算法的天然林空间结构优化[J]. 系统仿真学报, 2020, 32(3): 371-381. |
Dongsheng Qing, Zhang Xiaofang, Li Jianjun, et al. Spatial Structure Optimization of Natural Forest Based on Bee Colony-particle Swarm Algorithm[J]. Journal of System Simulation, 2020, 32(3): 371-381. | |
13 | Pitakaso Rapeepan, Sethanan Kanchana, Jamrus Thitipong. Hybrid PSO and ALNS Algorithm for Software and Mobile Application for Transportation in Ice Manufacturing Industry 3.5[J]. Computers & Industrial Engineering (S0360-8352), 2020, 144: 1-13. |
14 | Dai C, Zhu Y, Chen W. Seeker Optimization Algorithm[C]// 2006 Inter. Conf. Computational Intelligence and Security. Guangzhou: IEEE Press, 2006: 225-229. |
15 | Dai C, Zhu Y, Chen W. Seeker Optimization Algorithm[J]. Lecture Notes in Computer Science (S0302-9743), 2007, 4456: 167-176. |
16 | Dai C, Chen W, Zhu Y, et al. Seeker Optimization Algorithm for Optimal Reactive Power Dispatch[J]. IEEE Transactions on Power Systems (S0885-8950), 2009, 24(3): 1218-1231. |
17 | Dai C, Chen W, Song Y, et al. Seeker Optimization Algorithm: A novel Stochastic Search Algorithm for Global Numerical Optimization[J]. Journal of Systems Engineering and Electronics(S1004-4132), 2010, 21(2): 300-311. |
18 | Dai C, Chen W, Zhu Y, Seeker Optimization Algorithm for Digital IIR Filter Design[J]. IEEE Transactions on Industrial Electronics(S0278-0046), 2010, 57(5): 1710-1718. |
19 | Dai C, Chen W, Zhu Y, et al. Seeker Optimization Algorithm for Tuning the Structure and Parameters of Neural Networks[J]. Neurocomputing (S0925-2312), 2011, 74(6): 876-883. |
20 | Dai C, Cheng Z, Li Q, et al. Seeker Optimization Algorithm for Global Optimization: A Case Study on Optimal Modelling of Proton Exchange Membrane Fuel Cell (PEMFC)[J]. International Journal of Electrical Power and Energy Systems (S0142-0615), 2011, 33(3): 369-376. |
21 | Dai C, Chen W, Ran L, et al. Human Group Optimizer with Local Search[J]. Lecture Notes in Computer Science(S0302-9743), 2011, 6728: 310-320. |
22 | Zhu Y, Dai C, Chen W. Seeker Optimization Algorithm for Several Practical Applications[J]. International Journal of Computational Intelligence Systems (S1875-6891), 2014, 7(2): 1-15. |
23 | 杨博, 钟林恩, 朱德娜, 等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用, 2019, 36(3): 339-352. |
Yang Bo, Zhong Linen, Zhu Dena, et al. Modified Salp Swarm Algorithm Based Maximum Power Point Tracking of Power-voltage System Under Partial Shading Condition[J]. Control Theory & Applications, 2019, 36(3): 339-352. | |
24 | 王梦秋, 王艳, 纪志成. 基于改进樽海鞘群算法的PMSM多参数辨识[J]. 系统仿真学报, 2018,30(11): 4284-4291, 4297. |
Wang Mengqiu, Wang Yan, Ji Zhicheng. Permanent Magnet Synchronous Motor Multi-parameter Identification Based on Improved Salp Swarm Algorithm[J]. Journal of System Simulation, 2018, 30(11): 4284-4291, 4297. | |
25 | 邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47(2): 363-377. |
Xing Zhikai, Jia Heming, Song Wenlong. Levy Flight Trajectory-Based Salp Swarm Algorithm for Multilevel Thresholding Image Segmentation[J]. Acta Automatica Sinica, 2021, 47(2): 363-377. | |
26 | 陈涛, 王梦馨, 黄湘松. 基于樽海鞘群算法的无源时差定位[J]. 电子与信息学报, 2018, 40(7): 1591-1597. |
Chen Tao, Wang Mengxin, Huang Xiangsong. Time Difference of Arrival Passive Location Based on Salp Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597. | |
27 | Xia H, Wang Z, Zhou Y. Double-Population Differential Evolution Based on Logistic Model[J]. Journal of Information and Computational Science(S1548-7741), 2014, 11(15): 5549-5557. |
28 | Bao Z, Zhou Y, Li L. A Hybrid Global Optimization Algorithm Based on Wind Driven Optimization and Differential Evolution[J]. Mathematical Problems in Engineering(S1024-123X), 2015: No. 389630. |
29 | Li L, Zhou Y, Xie J. A Free Search Krill Herd Algorithm for Functions Optimization[J]. Mathematical Problems in Engineering(S1024-123X), 2014: No. 936374. |
30 | Li X, Zhang J, Yin M. Animal Migration Optimization: An Optimization Algorithm Inspired by Animal Migration Behavior[J]. Neural Computing and Applications (S0941-0643), 2014, 24(7/8): 1867-1877. |
31 | Kennedy J. Particle Swarm Optimization[M]// Encyclopedia of Machine Learning. New York: Springer, 2010: 760-766. |
32 | Yua H, Fang H, Yao P, et al. A Combined Genetic Algorithm/Simulated Annealing Algorithm for Large Scale System Energy Integration[J]. Computers & Chemical Engineering (S0098-1354), 2000, 24(8): 2023-2035. |
33 | Yildizdana Gülnur, Ömer Kaan Baykan. A novel Modified Bat Algorithm Hybridizing by Differential Evolution Algorithm[J]. Expert Systems with Applications(S0957-4174), 2019(141): No. 112949. |
34 | Li Chunquan, Luo Zu, Song Zhenshou, et a. An Enhanced Brain Storm Sine Cosine Algorithm for Global Optimization Problem [J]. IEEE Access(S2169-3536), 2019, 7: 28211-28229. |
35 | Li Chunquan, Niu Zheng, Song Zhenshou, et al. A Double Evolutionary Learning Moth-Flame Optimization for Real-Parameter Global Optimization Problems[J]. IEEE Access(S2169-3536), 2018, 6: 76700-76727. |
36 | Dowlatshahi M B, Nezamabadi-pour H, Mashinchi M. A Discrete Gravitational Search Algorithm for Solving Combinatorial Optimization Problems[J]. Information Sciences(S0020-0255), 2014, 258: 94-107. |
37 | Zhou Y, Bao Z, Luo Q, et al. A Complex-valued Encoding Wind Driven Optimization with Greedy Strategy for 0-1 Knapsack Problem[J]. Applied Intelligence(S0924-669X), 2017, 46: 684-702. |
[1] | Feibo Feng, Xingde Yan, Baoqiang Zheng, Xiaofeng Yin, Mengzhen Zhou, Xin Jiang. Bi-Level Optimization of Distribution Network for Hybrid Energy Storage System of Storage Battery and Hydrogen Storage [J]. Journal of System Simulation, 2022, 34(7): 1405-1416. |
[2] | Lin Ma, Xuesong Zhang, Xinlin Lei, Tie Bao. Design and Implementation of A Hybrid Solver on CPU and GPU Multi-target Machines [J]. Journal of System Simulation, 2022, 34(4): 670-678. |
[3] | Xinyu Gao, Jing Ni. Optimization of Dynamic Post-disaster Emergency Distribution Network under Perspective of Rescue Efficiency [J]. Journal of System Simulation, 2022, 34(4): 806-816. |
[4] | Naiyang Xue, Dan Ding, Hongmin Wang, Yile Fan, Zhongqian Liu. Idea of Infinitesimal Method-introduced Hybrid TT&C Resources Joint Scheduling [J]. Journal of System Simulation, 2022, 34(4): 826-835. |
[5] | Tao Ning, Tao Gou, Xiangdong Liu. Simulation on Cold Chain Distribution Path of Fresh Agricultural Products Under Low-carbon Constraints [J]. Journal of System Simulation, 2022, 34(4): 797-805. |
[6] | Limei Wang, Hongyan Yao, Kang Zhang. Simulation of Robust Optimal Synchronization Control for Direct Drive H-Type Motion Platform [J]. Journal of System Simulation, 2022, 34(3): 527-535. |
[7] | Xiaoan Sun, Xiaoli Luan, Fei Liu. Electronic Solid Waste Prediction Based on Intelligent Optimization Grey Model [J]. Journal of System Simulation, 2022, 34(3): 536-542. |
[8] | Wan Jiaqing, Wang Pengfei, Tang Junlin, Zhang Dong, Li Xinguo. Research on Hybrid Deployment Strategy and Model for Key Position Air-defense Based on Multi-weapon Platforms [J]. Journal of System Simulation, 2021, 33(8): 1754-1765. |
[9] | Li Zhihua, Jiang De, Shen Hanwu, Fan Zhihua. Hybrid System Simulation Method Based on Quantized State [J]. Journal of System Simulation, 2021, 33(8): 1775-1783. |
[10] | Hu Rong, Dong Yuming, Qian Bin. Pathfinder Algorithm for Green Pipeline Scheduling with Limited Buffers [J]. Journal of System Simulation, 2021, 33(6): 1384-1396. |
[11] | Han Jingang, Li Xu. Energy Management of Marine Current Power Generation System Based on Fuzzy Logical Control [J]. Journal of System Simulation, 2021, 33(6): 1406-1414. |
[12] | Wang Runhong, Wang Hongjun, Zou Xiangjun, Zeng Zeqin, Li Hui, Huang Zhaofeng, Liu WeiLiang. Combined Gearbox Transmission Ratio Optimization Research Based on Hybrid Particle Swarm [J]. Journal of System Simulation, 2021, 33(4): 825-836. |
[13] | Chen Kui, Bi Li. Research on FJSP of Improved Particle Swarm Optimization Algorithm Considering Transportation Time [J]. Journal of System Simulation, 2021, 33(4): 845-853. |
[14] | Liu Jingsen, Yuan Mengmeng, Li Yu. Solving Engineering Optimization Design Problems Based on Improved Salp Swarm Algorithm [J]. Journal of System Simulation, 2021, 33(4): 854-866. |
[15] | Guo Ai, Chen Chao, Shi Junjie, Liu Zhengjie, Chen Weirong, Liang Jiayi, Liu Nan. Comparative Study of Energy Management Strategy Based on Value Loss of Tram Hybrid Power System [J]. Journal of System Simulation, 2021, 33(3): 572-580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||