1 |
Xu Z, Liang W, Xia Q. Efficient Embedding of Virtual Networks to Distributed Clouds via Exploring Periodic Resource Demands[J]. IEEE Transactions on Cloud Computing(S2168-7161), 2018, 6(3): 694-707.
|
2 |
李成辉, 李仁旺, 杨强光, 等. 基于改进萤火虫算法的云计算任务调度算法[J]. 浙江理工大学学报(自然科学版), 2019, 41(3): 354-359.
|
|
Li Chenghui, Li Renwang, Yang Qiangguang, et al. Cloud Computing Task Scheduling Algorithm Based on Improved Firefly Algorithm[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2019, 41(3):354-359.
|
3 |
王康瑾, 贾统, 李影. 在离线混部作业调度与资源管理技术研究综述[J].软件学报, 2020, 31(10): 3100-3119.
|
|
Wang Kangjin, Jia Tong, Li Ying. State-of-the-art Survey of Scheduling and Resource Management Technology for Colocation Jobs[J]. Journal of Software, 2020,31(10):3100-3119.
|
4 |
Verma A, Kaushal S. A hybrid Multi-objective Particle Swarm Optimization for Scientific Workflow Scheduling[J]. Parallel Computing(S0167-8191), 2017, 62: 1-19.
|
5 |
Duan H, Chen C, Min G, et al. Energy-aware Scheduling of Virtual Machines in Heterogeneous Cloud Computing Systems[J]. Future Generation Computer Systems(S0167-739X), 2017, 74: 142-150.
|
6 |
Srichandan S, Turuk A K S. Task Scheduling for Cloud Computing Using Multi-objective Hybrid Bacteria Foraging Algorithm[J]. Future Computing and Informatics Journal(S2314-7288), 2018, 3(2): 210-23.
|
7 |
李强, 刘晓峰. 基于模拟植物生长算法的云作业调度模型[J]. 系统仿真学报, 2018, 30(12): 4649-4658.
|
|
Li Qiang, Liu Xiaofeng. Cloud Job Scheduling Model Based on Improved Plant Growth Algorithm[J]. Journal of System Simulation, 2018, 30(12): 4649-4658.
|
8 |
殷昌盛, 杨若鹏, 朱巍, 等. 多智能体分层强化学习综述[J]. 智能系统学报, 2020, 15(4): 646-655.
|
|
Yin Changsheng, Yang Ruopeng, Zhu Wei, et al. A Survey on Multi-agent Hierarchical Reinforcement Learning[J]. CAAI Transactions on Intelligent Systems, 2020, 15(4): 646-655.
|
9 |
Peng Z, Cui D, Zuo J, et al. Random Task Scheduling Scheme Based on Reinforcement Learning in Cloud Computing[J]. Cluster Computing(S1386-7857), 2015, 18: 1595-1607.
|
10 |
Cui D, Peng Z, Xiong J, et al. A Reinforcement Learning-Based Mixed Job Scheduler Scheme for Grid or IaaS Cloud[J]. IEEE Transactions on Cloud Computing(S2168-7161), 2020, 4: 1030-1039.
|
11 |
袁景凌, 陈旻骋, 江涛, 等. 异构云环境下AHP定权的多目标强化学习作业调度方法[J/OL].(2021-01-05) 控制与决策, 2021:1-8. .
|
|
Yuan Jingling, Chen Minchi, Jiang Tao, et al. Multi-Objective Reinforcement Learning Job Scheduling Method using AHP Fixed Weight in Heterogeneous Cloud Environment[J/OL].(2021-01-05) Control and Decision, 2021:1-8. .
|
12 |
Lin J, Cui D, Peng Z, et al. A Two-Stage Framework for the Multi-User Multi-Data Center Job Scheduling and Resource Allocation[J]. IEEE Access(S2169-3536), 2020, 8: 197863-197874.
|
13 |
郭玉栋, 左金平. 基于霍普菲尔德网络的云作业调度算法[J]. 系统仿真学报, 2019, 31(12): 2859-2867.
|
|
Guo Yudong, Zuo Jinping. The Scheduling Algorithm of Cloud Job Based on Hopfield Neural Network[J]. Journal of System Simulation, 2019, 31(12): 2859-2867.
|
14 |
Rangra A, Sehgal V K, Shukla S. A Novel Approach of Cloud Based Scheduling Using Deep-Learning Approach in E-Commerce Domain[J]. International Journal of Information System Modeling and Design(S1947-8186), 2019, 10(3): 59-75.
|
15 |
李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47(11): 2521-2537.
|
|
Li Kaiwen, Zhang Tao, Wang Rui, et al. Research Reviews of Combinatorial Optimization Methods Based on Deep Reinforcement Learning[J]. Acta Automatica Sinica, 2021, 47(11): 2521-2537.
|
16 |
朱斐, 吴文, 伏玉琛, 等. 基于双深度网络的安全深度强化学习方法[J].计算机学报, 2019, 42(8): 1812-1826.
|
|
Zhu Fei, Wu Wen, Fu Yushen, et al. A Dual Deep Network Based Secure Deep Reinforcement Learning Method[J]. Chinese Journal of Computers, 2019, 42(8): 1812-1826.
|
17 |
Guo W, Tian W, Ye Y, et al. Cloud Resource Scheduling With Deep Reinforcement Learning and Imitation Learning[J]. IEEE Internet of Things Journal(S2327-4662), 2021, 8(5): 3576-3586.
|
18 |
Peng Z, Lin J, Cui D, et al. A Multi-objective Trade-off Framework for Cloud Resource Scheduling Based on the Deep Q-network Algorithm[J]. Cluster Computing(S1386-7857), 2020, 23(4): 2753-2767.
|
19 |
Lin J, Peng Z, Cui D. Deep Reinforcement Learning for Multi-resource Cloud Job Scheduling[C]// 2018 25th International Conference on Neural Information Processing. Berlin: Springer, 2018: 289-302.
|
20 |
Miettinen A, Nurminen J. Energy Efficiency of Mobile Clients in Cloud Computing[C]// Boston: USENIX Association, 2010: 1-7.
|