Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (6): 1353-1366.doi: 10.16182/j.issn1004731x.joss.21-0108
• National Economy Simulation • Previous Articles Next Articles
Lingjia Ni1,2(), Xiaoxia Huang1,3(), Hongga Li1, Zibo Zhang1,2
Received:
2021-02-04
Revised:
2021-05-18
Online:
2022-06-30
Published:
2022-06-16
Contact:
Xiaoxia Huang
E-mail:13476143753@163.com;huangxx@aircas.ac.cn
CLC Number:
Lingjia Ni, Xiaoxia Huang, Hongga Li, Zibo Zhang. Research on Fire Emergency Evacuation Simulation Based on Cooperative Deep Reinforcement Learning[J]. Journal of System Simulation, 2022, 34(6): 1353-1366.
Table 5
Comparison of training situation between IDQN algorithm and cooperative DDQN algorithm with or without fire on the first floor of Liuxiandong Building
1 000轮算法训练情况 | 无火灾场景 | 火灾场景 | |||
---|---|---|---|---|---|
IDQN算法 | 协作式DDQN算法 | IDQN算法 | 协作式DDQN算法 | ||
疏散仿真 总时间/s | 第1次实验 | 61 348 | 55 386 | 66 612 | 63 153 |
第2次实验 | 50 231 | 56 727 | 69 642 | 60 514 | |
第3次实验 | 51 819 | 49 820 | 63 960 | 63 044 | |
3次实验平均 | 54 466 | 53 978 | 66 738 | 62 237 | |
初始收敛轮数 | 第1次实验 | 610 | 570 | 670 | 650 |
第2次实验 | 600 | 630 | 830 | 710 | |
第3次实验 | 640 | 620 | 700 | 680 | |
3次实验平均 | 617 | 607 | 733 | 680 |
Table 6
Comparison of evacuation result between IDQN algorithm and cooperative DDQN algorithm with or without fire on the first floor of Liuxiandong Building
算法疏散结果 | 无火灾场景 | 火灾场景 | |||
---|---|---|---|---|---|
IDQN算法 | 协作式DDQN算法 | IDQN算法 | 协作式DDQN算法 | ||
平均每人疏散 花费时间/s | 第1次实验 | 14.93 | 14.93 | 15.11 | 14.97 |
第2次实验 | 14.93 | 14.92 | 15.05 | 14.96 | |
第3次实验 | 14.92 | 14.91 | 15.13 | 14.98 | |
3次实验平均 | 14.93 | 14.92 | 15.10 | 14.97 | |
人员全部疏散 花费时间 | 第1次实验 | 26.00 | 26.00 | 26.00 | 26.00 |
第2次实验 | 26.00 | 26.00 | 27.00 | 26.00 | |
第3次实验 | 26.00 | 26.00 | 26.33 | 26.00 | |
3次实验平均 | 26.00 | 26.00 | 26.44 | 26.00 |
1 | 王玲. 公共场所用品的卫生检测分析[J]. 中外医学研究, 2010(10): 98. |
Wang Ling. Hygienic Detection and Analysis of Articles in Public Places[J]. Chinese and Foreign Medical Research, 2010(10): 98. | |
2 | 储浩然. 5G新技术全面赋能智慧消防行业[J]. 中国安防, 2020(5): 47-49. |
Chu Haoran. 5G New Technology Fully Empowers the Smart Fire Protection Industry[J]. China Security, 2020(5): 47-49. | |
3 | Bryan J L. A Review of the Examination and Analysis of the Dynamics of Human Behavior in the Fire at the MGM Grand Hotel, Clark County, Nevada as Determined from a Selected Questionnaire Population [J]. Fire Safety Journal(S0379-7112), 1983, 5(3/4): 233-240. |
4 | Cremer M, Ludwig J. A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations[J]. Mathematics and Computers in Simulation, 1986, 28(4): 297-303. |
5 | 宋英华, 张宇, 霍非舟, 等. 考虑避让行为的人员疏散元胞自动机模型研究[J]. 系统仿真学报, 2020, 32(6): 975-981. |
Song Yinghua, Zhang Yu, Huo Feizhou, et al. Study on Evacuation Cellular Automaton Model Considering Avoidance Behavior[J]. Journal of System Simulation, 2020, 32(6): 975-981. | |
6 | Helbing D, Molnar P. Social Force Model for Pedestrian Dynamics[J]. Physical Review E (S1539-3755), 1995, 51(5): 4282-4286. |
7 | 邓媛媛, 郑利平, 蔡瑞文. 社会行为驱动的疏散仿真方法研究[J]. 系统仿真学报, 2020, 32(1): 130-141. |
Deng Yuanyuan, Zheng Liping, Cai Ruiwen. Research on Evacuation Simulation Method Considering Social Behavior[J]. Journal of System Simulation, 2020, 32(1): 130-141. | |
8 | 李昌华, 毕成功, 李智杰. 基于改进PSO算法的人群疏散模型[J]. 系统仿真学报, 2020, 32(6): 1000-1008. |
Li Changhua, Bi Chenggong, Li Zhijie. Crowd Evacuation Model Based on Improved PSO Algorithm[J]. Journal of System Simulation, 2020, 32(6): 1000-1008. | |
9 | Huang X, Li H, Li X, et al. Fire Numerical Simulation Analysis for Large-scale Public Building in 3D GIS[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 7522-7525. |
10 | Berg J V D, Lin M, Manocha D. Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation[C]//IEEE International Conference on Robotics and Automatics. Pasadena: IEEE, 2008: 1928-1935. |
11 | 林海波, 郑利平, 王建伟, 等. 一种通用的层次化人群疏散仿真框架[J]. 系统仿真学报, 2020, 32(8): 1524-1530. |
Lin Haibo, Zheng Liping, Wang Jianwei, et al. A Common and Hierarchical Crowd Evacuation Simulation Framework[J]. Journal of System Simulation, 2020, 32(8): 1524-1530. | |
12 | Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with Deep Reinforcement Learning[J/OL]. Computer Ence, [2021-03-18]. . |
13 | Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous Control with Deep Reinforcement Learning[J/OL]. [2021-03-18]. . |
14 | Mnih V, Badia A P, Mirza M, et al. Asynchronous Methods for Deep Reinforcement Learning[C]//Interna-tional Conference on Machine Learning. PMLR: 2016: 1928-1937. |
15 | Schulman J, Wolski F, Dhariwal P, et al. Proximal Policy Optimization Algorithms[J/OL]. [2021-03-18]. . |
16 | Mnih V, Kavukcuoglu K, Silver D, et al. Human-Level Control Through Deep Reinforcement Learning[J]. Nature (S0028-0836), 2015, 518(7540): 529-533. |
17 | Levine S, Pastor P, Krizhevsky A, et al. Learning Hand-Eye Coordination for Robotic Grasping with Large-Scale Data Collection[C]//International Symposium on Experimental Robotics. 2017. |
18 | Satija H, Pineau J. Simultaneous Machine Translation Using Deep Reinforcement Learning[C]//Workshops of International Conference on Machine Learning. New York: 2016: 110-119. |
19 | Sallab A, Abdou M, Perot E, et al. Deep Reinforcement Learning Framework for Autonomous Driving[J]. Electronic Imaging(S1017-9909), 2017(19): 70-76. |
20 | Tai L, Paolo G, Liu M. Virtual-to-Real Deep Reinforcement Learning: Continuous Control of Mobile Robots for Mapless Navigation[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE. 2017: 31-36. |
21 | Yu H, Zhang H, Xu W. A Deep Compositional Framework for Human-Like Language Acquisition in Virtual Environment[J/OL]. [2021-03-18]. . |
22 | Chen Y F, Liu M, Everett M F, et al. Decentralized Non-Communicating Multiagent Collision Avoidance with Deep Reinforcement Learning[C]//2017 IEEE Interna-tional Conference on Robotics and Automation. Singa-pore: IEEE, 2017: 285-292. |
23 | Van H H, Guez A, Silver D. Deep Reinforcement Learning with Double Q-Learning[C]//Thirtieth AAAI Conference on Aitificial Intelligence. Palo Alto, CA: AAAI, 2016: 2094-2100. |
24 | 孙彧, 曹雷, 陈希亮, 等. 多智能体深度强化学习研究综述[J]. 计算机工程与应用, 2020, 56(5): 13-24. |
Sun Yu, Cao Lei, Chen Xiliang, et al. A Review of Multi-Agent Deep Reinforcement Learning[J]. Computer Engineering and Applications, 2020, 56(5): 13-24. | |
25 | 陈延敏, 李锦华. 国内外建筑信息模型 (BIM) 理论与实践研究综述[J]. 城市, 2013(10): 72-76. |
Chen Yanmin, Li Jinhua. A Summary of the Research on the Theory and Practice of Building Information Modeling (BIM) at Home and Abroad[J]. City, 2013(10): 72-76. | |
26 | 刘阳. 基于FDS的建筑火灾数值模拟及安全疏散研究[D]. 阜新: 辽宁工程技术大学, 2013. |
Liu Yang. Research on Building Fire Numerical Simulation and Safe Evacuation Based on FDS[D]. Fuxin: Liaoning Technical University, 2013. | |
27 | 毕伟民. 基于火灾动力学和疏散理论耦合的人员疏散研究[D]. 西安: 建筑科技大学, 2008. |
Bi Weimin. Evacuation Research Based on the Coupling of Fire Dynamics and Evacuation Theory[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. | |
28 | 沙云飞. 人群疏散的微观仿真模型研究[D]. 北京: 清华大学, 2008. |
Sha Yunfei. Research on Microscopic Simulation Model of Crowd Evacuation[D]. Beijing: Tsinghua University, 2008. | |
29 | 张江涛. 基于FDS的办公大楼火灾数值模拟研究[D]. 邯郸: 河北工程大学, 2015. |
Zhang Jiangtao. Research on Numerical Simulation of Office Building Fire Based on FDS[D]. Handan: Hebei University of Engineering, 2015. | |
30 | 李引擎, 史毅. 建筑防火工程[M]. 北京: 化学工业出版社, 2004. |
Li Yinqing, Shi Yi. Building Fire Protection Engineering[M]. Beijing: Chemical Industry Press, 2004. | |
31 | Li B, Liang H. Multi-Robot Path Planning Method Based on Prior Knowledge and Q-learning Algorithms[J]. Journal of Physics: Conference Series, 2020, 1624(4):042008. |
32 | Lhan E, Gow J, Perezliebana D. Teaching on a Budget in Multi-Agent Deep Reinforcement Learning[C]//2019 IEEE Conference on Games. London: IEEE, 2019: 1-8. |
33 | Koh S, Zhou B, Fang H, et al. Real-Time Deep Reinforcement Learning Based Vehicle Routing and Navigation[J]. Applied Soft Computing(S1568-4946), 2020, 96: 106694. |
[1] | Sen Zhang, Mengyan Zhang, Jingping Shao, Jiexin Pu. Multi-UAVs 3D Path Planning Method Based on Random Strategy Search [J]. Journal of System Simulation, 2022, 34(6): 1286-1295. |
[2] | Xin Zhou, Weiping Wang, Yifan Zhu, Tao Wang, Tian Jing. An Unmanned Swarm Search Method Based on Human-Robot Cooperation [J]. Journal of System Simulation, 2022, 34(4): 735-744. |
[3] | Hongwei Wang, Peng Yang. Research on Optimization of Airport Cargo Business Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(3): 651-660. |
[4] | Qirui Li, Xinyi Peng. Job Scheduling and Simulation in Cloud Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(2): 258-268. |
[5] | Qi Xiaolong, Yang Xuguang. Time-varying Output Formation Tracking Control of Discrete-time Heterogeneous Multi-agent Systems [J]. Journal of System Simulation, 2022, 34(1): 36-44. |
[6] | Gui Xindong, Ji Hongjiang, Fan Lingling, Liu Shida. Application of Trust Driven Adaptive Cooperative Control Algorithm [J]. Journal of System Simulation, 2021, 33(8): 1809-1817. |
[7] | Guo Haixiang, Zeng Yang, Chen Weiming. Research on Indoor Emergency Evacuation Simulation of Multi-Exit Based on social Force Model [J]. Journal of System Simulation, 2021, 33(3): 721-731. |
[8] | Gao Ang, Dong Zhiming, Zhang Guohui, Liang Tao, Guo Qisheng. Research on Generation Technology of Computer Generated Force in LVC Training System [J]. Journal of System Simulation, 2021, 33(3): 745-752. |
[9] | Zeng Bi, Fang Xiao, Kong Deshuai, Song Xiangxiang, Jia Zhengxuan, Lin Tingyu. A Data-Driven Modeling Method for Game Adversity Agent [J]. Journal of System Simulation, 2021, 33(12): 2838-2845. |
[10] | Liang Wei, Huang Yanyan, Wang Jianyu. Modeling Method of Emergency Response based on Internal and External Areas of Disaster Zone [J]. Journal of System Simulation, 2020, 32(4): 669-677. |
[11] | Fu Yuewen, Wang Yuancheng, Chen Zhen, Fan Wenlan. Target Decision in Collaborative Air Combats Using Multi-agent Particle Swarm Optimization [J]. Journal of System Simulation, 2018, 30(11): 4151-4157. |
[12] | Jiang Wuxue, Hu Xuanzi, Liu Minxia, Chen Yuqiang. Information Collaboration Model of Cloud Computing Supply Chain Based on Multi-Agent [J]. Journal of System Simulation, 2016, 28(1): 51-56. |
[13] | Zhao Yuan, Cheng Jiachang, Wang Lu, Hu Yueming. GPU-Accelerated Simulation for Class of Multi-Agent Based Models [J]. Journal of System Simulation, 2015, 27(2): 396-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||