Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (8): 2016-2029.doi: 10.16182/j.issn1004731x.joss.0124-0243
• Papers • Previous Articles
Xie Yong1, Gao Hailong1, Chen Yutao2, Wang Huanjiang1
Received:
2024-03-14
Revised:
2024-06-21
Online:
2025-08-20
Published:
2025-08-26
Contact:
Chen Yutao
CLC Number:
Xie Yong, Gao Hailong, Chen Yutao, Wang Huanjiang. Optimization of Product Oil Distribution with Multiple Trips and Multiple Due Dates under Dynamic Demand[J]. Journal of System Simulation, 2025, 37(8): 2016-2029.
Table 4
Comparison of solution results from different algorithms
算例配置 | RLLNS算法 | IALNS算法 | ILNS算法 | |||
---|---|---|---|---|---|---|
总收益/元 | 时间/s | 总收益/元 | 时间/s | 总收益/元 | 时间/s | |
S23-O69-V5-C3-8000 | 31 019 | 10.32 | 29 235 | 28.26 | 28 022 | 31.02 |
S23-O69-V5-C4-8000 | 26 873 | 9.56 | 27 162 | 30.23 | 26 058 | 38.51 |
S23-O69-V6-C3-16000 | 59 016 | 10.91 | 56 178 | 33.26 | 55 193 | 40.62 |
S23-O69-V6-C4-16000 | 59 718 | 10.89 | 57 635 | 28.47 | 56 334 | 28.47 |
S50-O150-V12-C3-8000 | 72 364 | 18.34 | 72 159 | 72.36 | 70 228 | 76.96 |
S50-O150-V12-C4-8000 | 81 921 | 17.17 | 80 234 | 78.21 | 78 676 | 77.29 |
S50-O150-V14-C3-16000 | 155 298 | 19.33 | 154 289 | 72.33 | 152 798 | 80.61 |
S50-O150-V14-C4-16000 | 159 984 | 18.27 | 157 564 | 71.92 | 155 875 | 76.52 |
[1] | 马义飞, 孙晓燕. 成品油二次配送调度优化模型及其遗传算法求解[J]. 运筹与管理, 2010, 19(6): 73-78. |
Ma Yifei, Sun Xiaoyan. Dispatching Optimization Model of Second Distribution of Gasolin & Diesel Oil and Solution Based on Genetic Algorithm[J]. Operations Research and Management Science, 2010, 19(6): 73-78. | |
[2] | 杨雅光. 成品油二次配送环节损耗治理方案[J]. 油气储运, 2015, 34(1): 57-61. |
Yang Yaguang. Prevention of Loss in the Secondary Distribution of Products Oil[J]. Oil & Gas Storage and Transportation, 2015, 34(1): 57-61. | |
[3] | 孙丽华. 石化企业成品油物流优化信息化建设探析[J]. 计算机与应用化学, 2012, 29(5): 620-624. |
Sun Lihua. Study on the Logistics Optimization Informationization of Oil Products in Petrochemical Enterprises[J]. Computers and Applied Chemistry, 2012, 29(5): 620-624. | |
[4] | Psaraftis H N. Dynamic Vehicle Routing Problems[J]. Vehicle Routing: Methods and Studies, 1988, 16: 223-248. |
[5] | Lund K, Madsen O B G, Rygaard J M. Vehicle Routing Problems with Varying Degrees of Dynamism[R]. IMM, Institute of Mathematical Modelling, Technical University of Denmark, Kongens Lyngby, Denmark 1996. |
[6] | Haghani A, Jung S. A Dynamic Vehicle Routing Problem with Time-dependent Travel Times[J]. Computers & Operations Research, 2005, 32(11): 2959-2986. |
[7] | Azi Nabila, Gendreau Michel, Potvin Jean-Yves. A Dynamic Vehicle Routing Problem with Multiple Delivery Routes[J]. Annals of Operations Research, 2012, 199(1): 103-112. |
[8] | Khouadjia Mostepha R, Sarasola Briseida, Alba Enrique, et al. A Comparative Study Between Dynamic Adapted PSO and VNS for the Vehicle Routing Problem with Dynamic Requests[J]. Applied Soft Computing, 2012, 12(4): 1426-1439. |
[9] | Su Yansen, Liu Jia, Xiang Xiaoshu, et al. A Responsive Ant Colony Optimization for Large-scale Dynamic Vehicle Routing Problems via Pheromone Diversity Enhancement[J]. Complex & Intelligent Systems, 2021, 7(5): 2543-2558. |
[10] | Yu Jianqiao, Yu Wen, Gu Jiatao. Online Vehicle Routing with Neural Combinatorial Optimization and Deep Reinforcement Learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3806-3817. |
[11] | Li Jingwen, Ma Yining, Gao Ruize, et al. Deep Reinforcement Learning for Solving the Heterogeneous Capacitated Vehicle Routing Problem[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13572-13585. |
[12] | Joe W, Lau H C. Deep Reinforcement Learning Approach to Solve Dynamic Vehicle Routing Problem with Stochastic Customers[C]//Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling. Palo Alto: AAAI Press, 2020: 394-402. |
[13] | Chen Xinyun, Tian Yuandong. Learning to Perform Local Rewriting for Combinatorial Optimization[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 6281-6292. |
[14] | Wu Yaoxin, Song Wen, Cao Zhiguang, et al. Learning Improvement Heuristics for Solving Routing Problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 5057-5069. |
[15] | Zhao Jiuxia, Mao Minjia, Zhao Xi, et al. A Hybrid of Deep Reinforcement Learning and Local Search for the Vehicle Routing Problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 7208-7218. |
[16] | 李珍萍, 杨光, 韩倩倩. 考虑工作量均衡的成品油二次配送车辆路径问题[J]. 系统仿真学报, 2022, 34(2): 221-233. |
Li Zhenping, Yang Guang, Han Qianqian. Vehicle Routing Problem with Refined Oil Secondary Distribution Considering Workload Balance[J]. Journal of System Simulation, 2022, 34(2): 221-233. | |
[17] | Wang L, Kinable J, van Woensel T. The Fuel Replenishment Problem: A Split-delivery Multi-compartment Vehicle Routing Problem with Multiple Trips[J]. Computers & Operations Research, 2020, 118: 104904. |
[18] | 王旭坪, 詹红鑫, 孙自来, 等. 多行程带补货时间窗的成品油多舱配送路径优化[J]. 管理工程学报, 2020, 34(4): 182-195. |
Wang Xuping, Zhan Hongxin, Sun Zilai, et al. Optimization of Routes for Multi-compartment, Multi-trip Refined Oil Distribution with Replenishment Time[J]. Journal of Industrial Engineering and Engineering Management, 2020, 34(4): 182-195. | |
[19] | Liu Qian, Wang Lianhua, Yu Le. Research on Refined Oil Distribution Plan Based on Dynamic Time Window[J]. Journal of Applied Mathematics and Physics, 2017, 5(11): 2104-2111. |
[20] | Xu Xiaofeng, Lin Ziru, Zhu Jing. DVRP with Limited Supply and Variable Neighborhood Region in Refined Oil Distribution[J]. Annals of Operations Research, 2022, 309(2): 663-687. |
[21] | Li Zhenping, Zhang Yuwei, Zhang Guowei. Two-stage Stochastic Programming for the Refined Oil Secondary Distribution with Uncertain Demand and Limited Inventory Capacity[J]. IEEE Access, 2020, 8: 119487-119500. |
[22] | 马向国, 刘同娟, 杨平哲, 等. 基于随机需求的冷链物流车辆路径优化模型[J]. 系统仿真学报, 2016, 28(8): 1824-1832, 1840. |
Ma Xiangguo, Liu Tongjuan, Yang Pingzhe, et al. Vehicle Routing Optimization Model of Cold Chain Logistics Based on Stochastic Demand[J]. Journal of System Simulation, 2016, 28(8): 1824-1832, 1840. | |
[23] | 南丽君, 陈彦如, 张宗成. 改进的自适应大规模邻域搜索算法求解动态需求的混合车辆路径问题[J]. 计算机应用研究, 2021, 38(10): 2926-2934. |
Lijun Nan, Chen Yanru, Zhang Zongcheng. Improved Adaptive Large Neighborhood Search Algorithm for Mixed Fleet Routing Problem of Dynamic Demands[J]. Application Research of Computers, 2021, 38(10): 2926-2934. | |
[24] | 孙宝凤, 史俊妍, 杨雪, 等. 基于实时信息的取送货动态车辆路径问题研究[J]. 宁波大学学报(理工版), 2019, 32(3): 87-94. |
Sun Baofeng, Shi Junyan, Yang Xue, et al. Solution for Dynamic Pickup and Delivery Problem Based on Real-time Information[J]. Journal of Ningbo University(Natural Science & Engineering Edition), 2019, 32(3): 87-94. | |
[25] | 范双南, 陈纪铭, 高为民, 等. 基于改进智能水滴算法的动态车辆配送路径优化[J]. 系统仿真学报, 2020, 32(9): 1808-1817. |
Fan Shuangnan, Chen Jiming, Gao Weimin, et al. Dynamic Vehicle Distribution Path Optimization Based on Improved Intelligent Water Drop Algorithm[J]. Journal of System Simulation, 2020, 32(9): 1808-1817. | |
[26] | Lu Zhou, Pu Hongming, Wang Feicheng, et al. The Expressive Power of Neural Networks: A View from the Width[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6232-6240. |
[27] | 高海龙, 谢勇, 马吉祥, 等. 多行程多交货期的成品油配送优化[J]. 控制与决策, 2022, 37(10): 2714-2722. |
Gao Hailong, Xie Yong, Ma Jixiang, et al. Optimization of Refined Oil Distribution with Multiple Trips and Multiple Due Time[J]. Control and Decision, 2022, 37(10): 2714-2722. | |
[28] | van Hasselt Hado, Guez A, Silver D. Deep Reinforcement Learning with Double Q-learning[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2094-2100. |
[29] | Li Xijun, Luo Weilin, Yuan Mingxuan, et al. Learning to Optimize Industry-scale Dynamic Pickup and Delivery Problems[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE). Piscataway: IEEE, 2021: 2511-2522. |
[30] | Zhang Yuchang, Bai Ruibin, Qu Rong, et al. A Deep Reinforcement Learning Based Hyper-heuristic for Combinatorial Optimisation with Uncertainties[J]. European Journal of Operational Research, 2022, 300(2): 418-427. |
[31] | François Véronique, Arda Yasemin, Crama Yves, et al. Large Neighborhood Search for Multi-trip Vehicle Routing[J]. European Journal of Operational Research, 2016, 255(2): 422-441. |
[1] | Zhang Wei, Sheng Wei, Cao Yidan, Zhao Tingsheng. Research on 3D Visualization of Safety Monitoring and Early Warning for Steel Continuous Casting Scenarios [J]. Journal of System Simulation, 2025, 37(8): 1991-2003. |
[2] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
[3] | Zhang Sen, Dai Qiangqiang. UAV Path Planning Based on Improved Deep Deterministic Policy Gradients [J]. Journal of System Simulation, 2025, 37(4): 875-881. |
[4] | Li Min, Zhang Sen, Zeng Xiangguang, Wang Gang, Zhang Tongwei, Xie Dijie, Ren Wenzhe, Zhang Tao. Trajectory Planning of Quadruped Robot Over Obstacle with Single Leg Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(4): 895-909. |
[5] | Wang He, Xu Jianing, Yan Guangyu. Research on Pedestrian Avoidance Strategy for AGV Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(3): 595-606. |
[6] | Zhang Bin, Lei Yonglin, Li Qun, Gao Yuan, Chen Yong, Zhu Jiajun, Bao Chenlong. Reinforcement Learning Modeling of Missile Penetration Decision Based on Combat Simulation [J]. Journal of System Simulation, 2025, 37(3): 763-774. |
[7] | Huang Sijin, Wen Jia, Chen Zheyi. Intelligent Service Migration towards MEC-based IoV Systems [J]. Journal of System Simulation, 2025, 37(2): 379-391. |
[8] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
[9] | Diao Xiaolong. Driverless Vehicles Distribution Problem in Communities in Cooperation of Storage Points [J]. Journal of System Simulation, 2025, 37(1): 284-298. |
[10] | Wu Yuxin, Zhang Zhilong, Liu Aoxu, Zou Jiangwei, LI Chuwei. Moving Target Velocity Measurement Method Based on Multi-view Observation Optimization of UAV Image [J]. Journal of System Simulation, 2025, 37(1): 40-53. |
[11] | Li Chao, Li Jiabao, Ding Caichang, Ye Zhiwei, Zuo Fangwei. Edge Surveillance Task Offloading and Resource Allocation Algorithm Based on DRL [J]. Journal of System Simulation, 2024, 36(9): 2113-2126. |
[12] | Qian Dianwei, Qi Hongmin, Liu Zhen, Zhou Zhiming, Yi Jianqiang. Research on Autonomous Decision-making in Air-combat Based on Improved Proximal Policy Optimization [J]. Journal of System Simulation, 2024, 36(9): 2208-2218. |
[13] | Zhu Zilu, Liu Yongkui, Zhang Lin, Wang Lihui, Lin Tingyu. Simulation of Robotic Peg-in-hole Assembly Strategy Based on DRL [J]. Journal of System Simulation, 2024, 36(6): 1414-1424. |
[14] | Zhou Zhiyong, Mo Fei, Zhao Kai, Hao Yunbo, Qian Yufeng. Adaptive PID Control Algorithm Based on PPO [J]. Journal of System Simulation, 2024, 36(6): 1425-1432. |
[15] | Wang Hongjun, Lin Junqiang, Zou Xiangjun, Zhang Po, Zhou Mingxuan, Zou Weirui, Tang Yunchao, Luo Lufeng. Construction of a Virtual Interactive System for Orchards Based on Digital Twin [J]. Journal of System Simulation, 2024, 36(6): 1493-1508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||