Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (10): 2672-2686.doi: 10.16182/j.issn1004731x.joss.24-0510
• Papers • Previous Articles
Xuan Hua, Lü Lin, Li Bing
Received:
2024-05-13
Revised:
2024-09-19
Online:
2025-10-20
Published:
2025-10-21
CLC Number:
Xuan Hua, Lü Lin, Li Bing. Distributed Heterogeneous Hybrid Flow-shop Scheduling Considering Combined Buffer[J]. Journal of System Simulation, 2025, 37(10): 2672-2686.
Table 3
Instance information
算例 | J | |
---|---|---|
1, 9, 17, 25, 33, 41 | 20 | |
2, 10, 18, 26, 34, 42 | 30 | |
3, 11, 19, 27, 35, 43, 49, 55, 61 | 40 | |
4, 12, 20, 28, 36, 44, 50, 56, 62 | 50 | |
5, 13, 21, 29, 37, 45, 51, 57, 63 | 60 | |
6, 14, 22, 30, 38, 46, 52, 58, 64 | 80 | |
7, 15, 23, 31, 39, 47, 53, 59, 65 | 100 | |
8, 16, 24, 32, 40, 48, 54, 60, 66 | 120 | |
算例 | F | |
1~24 | 2 | |
25~48 | 3 | |
49~66 | 4 | |
算例 | N | Mn, f |
1~8,25~32,49~54 | 2 | 3 |
9~16,33~41,55~60 | 4 | 4 |
17~24,42~48,61~66 | 8 | 4 |
Table 5
Orthogonal table L25(56)
实验 | 因子等级 | 平均目标值 | |||||
---|---|---|---|---|---|---|---|
W | Ʋmax | λ | γ | ε | θ | ||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 188.9 |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 3 048.5 |
3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 532.6 |
4 | 1 | 4 | 4 | 4 | 4 | 4 | 3 573.7 |
5 | 1 | 5 | 5 | 5 | 5 | 5 | 3 307.9 |
6 | 2 | 1 | 2 | 3 | 4 | 5 | 3 680.5 |
7 | 2 | 2 | 3 | 4 | 5 | 1 | 4 195.0 |
8 | 2 | 3 | 4 | 5 | 1 | 2 | 3 268.9 |
9 | 2 | 4 | 5 | 1 | 2 | 3 | 3 972.7 |
10 | 2 | 5 | 1 | 2 | 3 | 4 | 4 053.2 |
11 | 3 | 1 | 3 | 5 | 2 | 4 | 4 064.8 |
12 | 3 | 2 | 4 | 1 | 3 | 5 | 2 790.6 |
13 | 3 | 3 | 5 | 2 | 4 | 1 | 3 755.4 |
14 | 3 | 4 | 1 | 3 | 5 | 2 | 2 602.8 |
15 | 3 | 5 | 2 | 4 | 1 | 3 | 3 412.0 |
16 | 4 | 1 | 4 | 2 | 5 | 3 | 2 173.0 |
17 | 4 | 2 | 5 | 3 | 1 | 4 | 3 251.0 |
18 | 4 | 3 | 1 | 4 | 2 | 5 | 2 721.0 |
19 | 4 | 4 | 2 | 5 | 3 | 1 | 4 267.0 |
20 | 4 | 5 | 3 | 1 | 4 | 2 | 3 508.0 |
21 | 5 | 1 | 5 | 4 | 3 | 2 | 3 744.1 |
22 | 5 | 2 | 4 | 5 | 4 | 3 | 2 869.8 |
23 | 5 | 3 | 3 | 1 | 5 | 4 | 2 724.5 |
24 | 5 | 4 | 2 | 2 | 1 | 5 | 3 184.9 |
25 | 5 | 5 | 1 | 3 | 2 | 1 | 3 846.0 |
Table 6
Average objective values for different finite shared buffers
算例 | HEDAQ | ||||
---|---|---|---|---|---|
Bn =0 | Bn =1 | Bn =2 | Bn =3 | Bn =4 | |
9 | 3 029.8 | 2 889.8 | 2 804.2 | 2 780.0 | 2 681.0 |
10 | 4 900.6 | 4 662.8 | 4 518.0 | 4 242.6 | 4 114.0 |
11 | 6 487.2 | 5 615.2 | 5 325.2 | 5 246.4 | 5 157.4 |
12 | 12 073.0 | 9 262.0 | 9 065.0 | 8 998.8 | 8 563.6 |
13 | 14 910.0 | 11 069.0 | 10 854.0 | 10 713.0 | 9 978.0 |
14 | 24 514.0 | 16 543.0 | 16 432.0 | 16 017.0 | 15 924.0 |
Table 8
Test results for small-scale instances
算例 | χ | η/% | ϖ/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EDA | HEDAQ | DABC | HDDE | EDA | DABC | HDDE | EDA | HEDAQ | DABC | HDDE | |
平均 | 2 573.27 | 2 238.68 | 2 423.28 | 2 391.24 | 15.08 | 8.54 | 6.90 | 2.99 | 1.61 | 2.16 | 2.16 |
1 | 2 887.80 | 2 542.40 | 2 751.33 | 2 697.93 | 13.59 | 8.22 | 6.12 | 3.75 | 2.52 | 2.89 | 2.80 |
9 | 3 007.60 | 2 558.20 | 2 753.60 | 2 601.90 | 17.57 | 7.64 | 1.71 | 3.23 | 1.25 | 2.11 | 1.44 |
17 | 1 692.80 | 1 428.00 | 1 609.40 | 1 512.60 | 18.54 | 12.70 | 5.92 | 3.28 | 2.28 | 2.30 | 2.47 |
25 | 2 423.33 | 2 112.47 | 2 328.42 | 2 389.69 | 14.72 | 10.22 | 13.12 | 2.10 | 0.95 | 1.63 | 1.94 |
33 | 2 449.73 | 2 288.13 | 2 353.87 | 2 383.33 | 7.06 | 2.87 | 4.16 | 2.25 | 1.44 | 1.77 | 1.92 |
41 | 2 978.33 | 2 502.87 | 2 743.07 | 2 762.00 | 19.00 | 9.60 | 10.35 | 3.34 | 1.21 | 2.28 | 2.37 |
Table 9
Test results for medium-scale instances
算例 | χ | η/% | ϖ/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EDA | HEDAQ | DABC | HDDE | EDA | DABC | HDDE | EDA | HEDAQ | DABC | HDDE | |
平均 | 6 605.42 | 5 722.19 | 6 222.91 | 6 141.97 | 17.32 | 9.30 | 7.77 | 2.30 | 0.60 | 1.49 | 1.35 |
2 | 8 492.13 | 7 817.07 | 8 227.60 | 8 020.40 | 8.64 | 5.25 | 2.60 | 1.81 | 0.87 | 1.44 | 1.16 |
3 | 7 717.40 | 6 947.00 | 7 542.33 | 7 263.80 | 11.09 | 8.57 | 4.56 | 1.38 | 0.60 | 1.21 | 1.08 |
4 | 13 150.73 | 12 050.93 | 12 200.80 | 12 393.07 | 9.13 | 1.24 | 2.84 | 1.60 | 0.63 | 0.77 | 0.94 |
5 | 17 848.80 | 16 489.00 | 17 401.80 | 16 934.80 | 8.25 | 5.54 | 2.70 | 1.57 | 0.68 | 1.28 | 0.97 |
10 | 3 681.00 | 3 420.90 | 3 582.40 | 3 597.70 | 7.60 | 4.72 | 5.17 | 1.16 | 0.37 | 0.86 | 0.91 |
11 | 6 960.00 | 5 960.50 | 6 735.00 | 6 260.00 | 16.77 | 12.99 | 5.02 | 1.91 | 0.20 | 1.52 | 0.71 |
12 | 10 976.00 | 9 294.30 | 10 602.60 | 9 603.50 | 18.09 | 14.08 | 3.33 | 1.97 | 0.14 | 1.57 | 0.48 |
13 | 11 685.00 | 8 826.60 | 10 001.00 | 9 843.00 | 32.38 | 13.31 | 11.52 | 3.43 | 0.15 | 1.50 | 1.32 |
18 | 1 905.20 | 1 423.60 | 1 794.60 | 1 639.40 | 33.83 | 26.06 | 15.16 | 4.41 | 0.77 | 3.57 | 2.40 |
19 | 1 189.20 | 1 094.40 | 1 061.20 | 1 080.60 | 8.66 | -3.03 | -1.26 | 1.51 | 0.32 | 0.27 | 0.46 |
20 | 1 303.40 | 1 131.80 | 1 145.40 | 1 154.40 | 15.16 | 1.20 | 2.00 | 2.02 | 1.31 | 1.44 | 1.53 |
21 | 1 524.00 | 1 179.40 | 1 325.80 | 1 401.40 | 29.22 | 12.41 | 18.82 | 2.14 | 0.09 | 1.34 | 1.99 |
26 | 3 798.27 | 2 748.00 | 3 411.33 | 3 321.40 | 38.22 | 24.14 | 20.87 | 3.93 | 0.80 | 2.99 | 2.86 |
27 | 6 308.56 | 5 856.18 | 5 979.11 | 5 950.49 | 7.72 | 2.10 | 1.61 | 1.07 | 0.28 | 0.49 | 0.44 |
28 | 12 373.33 | 9 232.02 | 11 806.00 | 12 183.00 | 34.03 | 27.88 | 31.96 | 3.71 | 0.53 | 2.09 | 2.50 |
29 | 12 969.33 | 12 176.67 | 12 305.07 | 12 706.87 | 6.51 | 1.05 | 4.35 | 0.68 | 0.03 | 0.13 | 0.46 |
34 | 4 346.00 | 4 048.60 | 4 173.60 | 4 209.60 | 7.35 | 3.09 | 3.98 | 1.15 | 0.38 | 0.70 | 0.80 |
35 | 5 546.93 | 5 200.67 | 5 288.53 | 5 163.33 | 6.66 | 1.69 | -0.72 | 0.95 | 0.23 | 0.44 | 0.19 |
36 | 10 383.33 | 7 602.13 | 9 942.00 | 9 985.00 | 36.58 | 30.78 | 31.34 | 3.36 | 0.81 | 2.75 | 2.80 |
37 | 9 996.00 | 9 224.00 | 9 473.60 | 9 514.60 | 8.37 | 2.71 | 3.15 | 1.15 | 0.29 | 0.57 | 0.61 |
42 | 2 659.00 | 2 181.40 | 2 426.20 | 2 337.00 | 21.89 | 11.22 | 7.13 | 3.76 | 1.29 | 2.55 | 2.09 |
43 | 2 353.33 | 1 893.13 | 2 185.13 | 2 094.13 | 24.31 | 15.42 | 10.62 | 4.39 | 1.58 | 3.36 | 2.81 |
44 | 2 290.00 | 1 995.73 | 2 110.00 | 2 160.00 | 14.74 | 5.73 | 8.23 | 3.56 | 1.82 | 2.49 | 2.79 |
45 | 2 319.20 | 1 848.00 | 2 092.80 | 2 052.00 | 25.50 | 13.25 | 11.04 | 3.38 | 0.66 | 2.08 | 1.84 |
49 | 6 163.67 | 5 243.13 | 6 018.87 | 5 509.40 | 17.56 | 14.80 | 5.08 | 2.09 | 0.28 | 1.80 | 0.80 |
50 | 8 889.67 | 7 447.87 | 8 016.93 | 7 971.27 | 19.36 | 7.64 | 7.03 | 2.30 | 0.30 | 1.09 | 1.03 |
51 | 9 637.60 | 8 850.60 | 9 153.60 | 9 235.60 | 8.89 | 3.42 | 4.35 | 1.43 | 0.50 | 0.85 | 0.95 |
55 | 5 448.00 | 4 699.40 | 5 065.60 | 4 974.40 | 15.93 | 7.79 | 5.85 | 2.61 | 0.87 | 1.72 | 1.51 |
56 | 6 375.00 | 5 523.00 | 6 013.00 | 5 950.00 | 15.43 | 8.87 | 7.73 | 1.98 | 0.38 | 1.30 | 1.18 |
57 | 9 407.00 | 8 661.60 | 9 032.20 | 8 987.00 | 8.61 | 4.28 | 3.76 | 1.14 | 0.26 | 0.70 | 0.64 |
61 | 3 609.80 | 3 388.80 | 3 500.00 | 3 441.80 | 6.52 | 3.28 | 1.56 | 1.56 | 0.85 | 1.21 | 1.02 |
62 | 2 701.00 | 2 166.00 | 2 436.00 | 2 394.00 | 24.70 | 12.47 | 10.53 | 3.97 | 1.21 | 2.60 | 2.38 |
63 | 3 971.00 | 3 210.00 | 3 306.00 | 3 352.00 | 23.71 | 2.99 | 4.42 | 2.71 | 0.28 | 0.58 | 0.73 |
Table 10
Test results for large-scale instances
算例 | χ | η/% | ϖ/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EDA | HEDAQ | DABC | HDDE | EDA | DABC | HDDE | EDA | HEDAQ | DABC | HDDE | |
平均 | 21 577.08 | 18 909.83 | 20 410.40 | 19 872.90 | 39.40 | 17.26 | 16.37 | 2.73 | 0.53 | 1.65 | 1.41 |
6 | 35 180.00 | 30 359.93 | 32 271.00 | 31 428.53 | 15.88 | 6.29 | 3.52 | 2.26 | 0.58 | 1.24 | 0.95 |
7 | 39 124.00 | 37 585.80 | 38 311.93 | 38 539.27 | 4.09 | 1.93 | 2.54 | 0.97 | 0.54 | 0.74 | 0.81 |
8 | 77 634.00 | 72 993.00 | 74 894.60 | 74 382.00 | 6.36 | 2.61 | 1.90 | 1.20 | 0.53 | 0.80 | 0.73 |
14 | 27 456.00 | 23 079.60 | 24 339.40 | 26 984.80 | 18.96 | 5.46 | 16.92 | 3.22 | 1.11 | 1.72 | 2.99 |
15 | 23 410.00 | 19 711.00 | 21 378.00 | 20 142.40 | 18.77 | 8.46 | 2.19 | 3.04 | 0.98 | 1.91 | 1.22 |
16 | 41 545.80 | 34 796.80 | 39 790.00 | 37 069.00 | 19.40 | 14.35 | 6.53 | 1.80 | 0.72 | 2.26 | 1.42 |
22 | 379.00 | 217.20 | 329.00 | 318.00 | 74.49 | 51.47 | 46.41 | 5.14 | 1.97 | 4.62 | 4.06 |
23 | 257.00 | 59.20 | 76.80 | 154.20 | 334.12 | 29.73 | 160.47 | 4.56 | 1.03 | 3.02 | 2.14 |
24 | 36.00 | 13.80 | 30.40 | 16.20 | 160.87 | 120.29 | 17.39 | 6.69 | 0.62 | 1.38 | 2.46 |
30 | 25 038.44 | 21 330.09 | 24 353.62 | 24 451.47 | 17.39 | 14.17 | 14.63 | 1.92 | 0.16 | 1.60 | 1.64 |
31 | 34 014.89 | 31 920.13 | 32 458.76 | 32 640.36 | 6.56 | 1.69 | 2.26 | 0.97 | 0.30 | 0.47 | 0.53 |
32 | 46 510.00 | 42 553.20 | 45 786.07 | 44 807.73 | 9.30 | 7.60 | 5.30 | 1.19 | 0.24 | 1.02 | 0.78 |
38 | 12 013.67 | 11 149.07 | 11 521.47 | 11 435.40 | 7.75 | 3.34 | 2.57 | 0.92 | 0.14 | 0.47 | 0.40 |
39 | 22 033.67 | 18 724.47 | 20 896.33 | 19 893.93 | 17.67 | 11.60 | 6.25 | 2.31 | 0.46 | 1.67 | 1.11 |
40 | 29 139.00 | 26 508.80 | 28 687.20 | 27 056.00 | 9.92 | 8.22 | 2.06 | 1.43 | 0.40 | 1.25 | 0.61 |
46 | 2 352.33 | 1 994.00 | 2 083.33 | 2 143.20 | 17.97 | 4.48 | 7.48 | 2.45 | 0.56 | 1.03 | 1.35 |
47 | 1 577.40 | 1 035.60 | 1 267.27 | 1 490.47 | 52.32 | 22.37 | 43.92 | 4.01 | 0.51 | 2.87 | 3.13 |
48 | 541.00 | 352.40 | 528.40 | 481.80 | 53.52 | 49.94 | 36.72 | 3.96 | 0.40 | 2.59 | 2.21 |
52 | 23 941.67 | 18 874.93 | 20 580.67 | 19 281.00 | 26.84 | 9.04 | 2.15 | 2.76 | 0.06 | 0.97 | 0.27 |
53 | 29 959.33 | 24 618.80 | 29 489.13 | 25 021.20 | 21.69 | 19.78 | 1.63 | 2.33 | 0.13 | 2.14 | 0.30 |
54 | 40 178.00 | 33 651.20 | 38 393.40 | 35 612.40 | 19.40 | 14.09 | 5.83 | 2.05 | 0.10 | 0.82 | 0.68 |
58 | 15 592.00 | 10 244.00 | 13 775.00 | 12 745.00 | 52.21 | 34.47 | 24.41 | 5.59 | 0.24 | 3.78 | 2.75 |
59 | 17 325.00 | 16 491.50 | 16 536.00 | 16 801.00 | 5.05 | 0.27 | 1.88 | 0.84 | 0.31 | 0.34 | 0.51 |
60 | 28 888.00 | 25 554.00 | 27 045.00 | 26 421.00 | 13.05 | 5.83 | 3.39 | 1.76 | 0.41 | 1.01 | 0.76 |
64 | 2 971.00 | 2 673.00 | 2 837.00 | 2 762.00 | 11.15 | 6.14 | 3.33 | 1.50 | 0.35 | 0.98 | 0.69 |
65 | 2 892.00 | 2 193.00 | 2 297.00 | 2 338.00 | 31.87 | 4.74 | 6.61 | 4.46 | 0.97 | 1.49 | 1.69 |
66 | 2 592.00 | 1 891.00 | 2 224.00 | 2 152.00 | 37.07 | 17.61 | 13.80 | 4.41 | 0.51 | 2.36 | 1.96 |
[1] | 袁帅鹏, 李铁克, 王柏琳. 带运输时间混合流水车间成组调度的协同进化文化基因算法[J]. 控制理论与应用, 2023, 40(3): 430-440. |
Yuan Shuaipeng, Li Tieke, Wang Bailin. Co-evolutionary Memetic Algorithm for the Hybrid Flow Shop Group Scheduling with Transportation Times[J]. Control Theory & Applications, 2023, 40(3): 430-440. | |
[2] | Meng Leilei, Gao Kaizhou, Ren Yaping, et al. Novel MILP and CP Models for Distributed Hybrid Flowshop Scheduling Problem with Sequence-dependent Setup Times[J]. Swarm and Evolutionary Computation, 2022, 71: 101058. |
[3] | Qin Haoxiang, Han Yuyan, Liu Yiping, et al. A Collaborative Iterative Greedy Algorithm for the Scheduling of Distributed Heterogeneous Hybrid Flow Shop with Blocking Constraints[J]. Expert Systems with Applications, 2022, 201: 117256. |
[4] | Shao Weishi, Shao Zhongshi, Pi Dechang. Modelling and Optimization of Distributed Heterogeneous Hybrid Flow Shop Lot-streaming Scheduling Problem[J]. Expert Systems with Applications, 2023, 214: 119151. |
[5] | 郦仕云, 杨孟平, 易文超, 等. 基于混合离散差分进化算法的分布式异构混合流水车间调度[J/OL]. 计算机集成制造系统. (2023-05-16) [2023-12-20]. . |
Li Shiyun, Yang Mengping, Yi Wenchao, et al. Hybrid Discrete Differential Evolution Algorithm for Distributed Heterogeneous Hybrid Flowshop Scheduling Problem[J/OL]. Computer Integrated Manufacturing Systems. (2023-05-16) [2023-12-20]. . | |
[6] | Missaoui Ahmed, Ruiz Rubén. A Parameter-less Iterated Greedy Method for the Hybrid Flowshop Scheduling Problem with Setup Times and Due Date Windows[J]. European Journal of Operational Research, 2022, 303(1): 99-113. |
[7] | Oğuzhan Ahmet Arık, Schutten Marco, Topan Engin. Weighted Earliness/Tardiness Parallel Machine Scheduling Problem with a Common Due Date[J]. Expert Systems with Applications, 2022, 187: 115916. |
[8] | Missaoui Ahmed, Boujelbene Younès. An Effective Iterated Greedy Algorithm for Blocking Hybrid Flow Shop Problem with Due Date Window[J]. RAIRO- Operations Research, 2021, 55(3): 1603-1616. |
[9] | 雷德明, 苏斌. 基于多班教学优化的多目标分布式混合流水车间调度[J]. 控制与决策, 2021, 36(2): 303-313. |
Lei Deming, Su Bin. Multi-class Teaching-learning-based Optimization for Multi-objective Distributed Hybrid Flow Shop Scheduling[J]. Control and Decision, 2021, 36(2): 303-313. | |
[10] | Shao Weishi, Pi Dechang, Shao Zhongshi. A Pareto-based Estimation of Distribution Algorithm for Solving Multiobjective Distributed No-wait Flow-shop Scheduling Problem with Sequence-dependent Setup Time[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1344-1360. |
[11] | Li Haoran, Li Xinyu, Gao Liang. A Discrete Artificial Bee Colony Algorithm for the Distributed Heterogeneous No-wait Flowshop Scheduling Problem[J]. Applied Soft Computing, 2021, 100: 106946. |
[12] | Zhu Ningning, Zhao Fuqing, Wang Ling, et al. A Discrete Learning Fruit Fly Algorithm Based on Knowledge for the Distributed No-wait Flow Shop Scheduling with Due Windows[J]. Expert Systems with Applications, 2022, 198: 116921. |
[13] | Zhao Fuqing, Zhao Jinlong, Wang Ling, et al. An Optimal Block Knowledge Driven Backtracking Search Algorithm for Distributed Assembly No-wait Flow Shop Scheduling Problem[J]. Applied Soft Computing, 2021, 112: 107750. |
[14] | 袁庆欣, 董绍华. 带有限缓冲区的混合流水车间多目标调度[J]. 工程科学学报, 2021, 43(11): 1491-1498. |
Yuan Qingxin, Dong Shaohua. Optimizing Multi-objective Scheduling Problem of Hybrid Flow Shop with Limited Buffer[J]. Chinese Journal of Engineering, 2021, 43(11): 1491-1498. | |
[15] | 轩华, 郑倩倩, 李冰. 带不相关并行机和有限缓冲MHFS调度的混合启发式算法[J]. 控制与决策, 2021, 36(3): 565-576. |
Xuan Hua, Zheng Qianqian, Li Bing. Hybrid Heuristic Algorithm for Multi-stage Hybrid Flow Shop Scheduling with Unrelated Parallel Machines and Finite Buffers[J]. Control and Decision, 2021, 36(3): 565-576. | |
[16] | Zhang Chunjiang, Tan Jiawei, Peng Kunkun, et al. A Discrete Whale Swarm Algorithm for Hybrid Flow-shop Scheduling Problem with Limited Buffers[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102081. |
[17] | Zhang Guanghui, Xing Keyi. Differential Evolution Metaheuristics for Distributed Limited-buffer Flowshop Scheduling with Makespan Criterion[J]. Computers & Operations Research, 2019, 108: 33-43. |
[18] | 张其亮, 陈永生. 求解具有混合约束流水车间调度问题的迭代贪婪算法[J]. 计算机应用研究, 2016, 33(2): 352-355. |
Zhang Qiliang, Chen Yongsheng. Iterated Greedy Algorithm for Mixed Constraints Flow Shop Scheduling Problem[J]. Application Research of Computers, 2016, 33(2): 352-355. | |
[19] | 孙厚权, 张其亮. 人工蜂群算法求解混合约束流水车间调度问题[J]. 计算机技术与发展, 2019, 29(3): 144-148, 153. |
Sun Houquan, Zhang Qiliang. Artificial Bee Colony Algorithm for Flow Shop Scheduling Problem with Mixed Buffering Requirements[J]. Computer Technology and Development, 2019, 29(3): 144-148, 153. | |
[20] | 张其亮, 陈永生. 解决具有混合约束柔性流水车间调度问题的粒子群优化算法[J]. 计算机应用研究, 2013, 30(11): 3253-3256, 3260. |
Zhang Qiliang, Chen Yongsheng. Particle Swarm Optimization Algorithm for Flexible Flow Shop Scheduling Problem with Mixed Constraints[J]. Application Research of Computers, 2013, 30(11): 3253-3256, 3260. | |
[21] | 轩华, 付鑫博, 李冰. 基于混合离散人工蜂群算法的混合零等待柔性流水车间优化研究[J]. 工业工程与管理, 2023, 28(1): 170-180. |
Xuan Hua, Fu Xinbo, Li Bing. Research on Optimization of Mixed Zero-wait Flexible Flowshop Based on Hybrid Discrete Artificial Bee Colony Algorithm[J]. Industrial Engineering and Management, 2023, 28(1): 170-180. | |
[22] | Zhuang Zilong, Zhang Zhanluo, Teng Hao, et al. Optimization for Integrated Scheduling of Intelligent Handling Equipment with Bidirectional Flows and Limited Buffers at Automated Container Terminals[J]. Computers & Operations Research, 2022, 145: 105863. |
[23] | Xi Bingjie, Lei Deming. Q-learning-based Teaching-learning Optimization for Distributed Two-stage Hybrid Flow Shop Scheduling with Fuzzy Processing Time[J]. Complex System Modeling and Simulation, 2022, 2(2): 113-129. |
[24] | Li Yingli, Li Xinyu, Gao Liang, et al. A Discrete Artificial Bee Colony Algorithm for Distributed Hybrid Flowshop Scheduling Problem with Sequence-dependent Setup Times[J]. International Journal of Production Research, 2021, 59(13): 3880-3899. |
[25] | 孟磊磊, 张超勇, 任彩乐, 等. 求解带有阻塞限制的HFSP的MILP模型与改进回溯搜索算法[J]. 中国机械工程, 2018, 29(22): 2647-2658. |
Meng Leilei, Zhang Chaoyong, Ren Caile, et al. MILP Models and an Improved BSA for Hybrid Flow Shop Scheduling Problems with Blocking[J]. China Mechanical Engineering, 2018, 29(22): 2647-2658. |
[1] | Wang Yuelong, Wang Songyan, Chao Tao. Multi-step Information Aided Q-learning Path Planning Algorithm [J]. Journal of System Simulation, 2024, 36(9): 2137-2148. |
[2] | Wang Xiaokang, Ji Jie, Liu Yang, He Qing. Path Planning of Unmanned Delivery Vehicle Based on Improved Q-learning Algorithm [J]. Journal of System Simulation, 2024, 36(5): 1211-1221. |
[3] | Huang Xingyuan, Li Yanyi. The Allocation of Jamming Resources Based on Double Q-learning Algorithm [J]. Journal of System Simulation, 2021, 33(8): 1801-1808. |
[4] | Zhou Jianpin, Zhang Shuliu. Dynamic Inventory Routing Optimization Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2019, 31(10): 2155-2163. |
[5] | Li Mo, Zhao Liang. Simulation of Neighbor Discovery Algorithm in Directional Antenna Ad Hoc Networks Based on OPNET [J]. Journal of System Simulation, 2018, 30(5): 1707-1714. |
[6] | Yan Xuefei, Li Xinming, Liu Dong, Li Kang. Battle Simulation Study on Multi-Agent Weapon System-of-Systems Based on Multi-Resolution [J]. Journal of System Simulation, 2017, 29(1): 136-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||