系统仿真学报 ›› 2025, Vol. 37 ›› Issue (1): 54-65.doi: 10.16182/j.issn1004731x.joss.24-0584

• 专栏:智能无人建模、仿真与应用 • 上一篇    下一篇

动态任务环境下智能体健壮行为树控制架构设计

王琪玮, 张琪, 杨硕, 彭勇   

  1. 国防科技大学 系统工程学院,湖南 长沙,410073
  • 收稿日期:2024-05-30 修回日期:2024-08-21 出版日期:2025-01-20 发布日期:2025-01-23
  • 通讯作者: 张琪
  • 第一作者简介:王琪玮(2000-),女,硕士生,研究方向为智能行为建模等。
  • 基金资助:
    国防科技大学青年自主创新科学基金(ZK2023-36)

Design of Robust Behavior Tree Control Architecture for Agents in Dynamic Task Environment

Wang Qiwei, Zhang Qi, Yang Shuo, Peng Yong   

  1. College of System Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2024-05-30 Revised:2024-08-21 Online:2025-01-20 Published:2025-01-23
  • Contact: Zhang Qi

摘要:

近年来,智能体执行任务所处环境的开放性和动态性不断增强,对智能体任务规划和行为调度的健壮性提出更高要求。行为树作为一种经典的行为控制架构,具有模块化、行为参数化、结构兼具计划表示和反应式的特点,能够有效支持智能体的行为表示、决策和调度。基于通用行为树和混合式行为策略,提出一种针对动态任务环境的健壮行为树控制架构,实现智能体的审慎式决策和反应式控制。该健壮行为树控制架构结合了智能体的审慎式规划算法和反应式规则,设计了相应的行为树代码框架,并根据结构要求定制设计了规划子树和循环节点,完成树内规划与反应的切换,支持用户基于定制结构快速规范的行为树实现。通过典型攻防游戏案例中智能体对象建模与仿真,验证了所提行为树架构的合理性。相比经典反应式行为树策略,健壮行为树能够灵活进行规划执行和反应式策略切换,在典型场景中提升蓝方突防胜率至90%,缩短24.88%任务执行时长,提高了智能体行为策略有效性和建模效率。

关键词: 动态环境, 行为树控制架构, 混合式行为决策, 节点定制, 路径规划

Abstract:

In recent years, the environment in which agents perform tasks has become more open and dynamic, which puts forward higher requirements for the robustness of task planning and behavior scheduling of agents. As a classic behavior control architecture, behavior tree has the characteristics of modularity, behavior parameterization, and structure of both plan representation and reaction, which can effectively support the behavior representation, decision making and scheduling of agents. Based on the hybrid behavior strategy, this paper proposes a robust behavior tree control architecture for dynamic task environment to realize the prudent decision-making and reactive control of agents. The robust behavior tree control architecture combines the prudent planning algorithm and reactive rules of the agent. A behavior tree code framework of the architecture is accordingly designed, and the planning subtree and the Loopnode are customized to support the fast implementation of the behavior tree to complete the switch between planning and reaction within the tree, which supports users to implement behavior tree quickly and standardly based on the customized structure. By the modeling and simulating of the agent object in a typical attack and defense game case, the paper verifies the rationality of the proposed behavior tree control architecture. Compared with the classical reactive behavior tree strategy, the robust behavior tree can flexibly switch between execution of the plan and reactive strategies, improve the blue agent's penetration win rate to 90% in typical scenarios, shorten task execution time by 24.88%, and improve the effectiveness of agent behavior strategy and modeling efficiency.

Key words: dynamic environment, behavior tree control architecture, hybrid behavior decision, node customization, path planning

中图分类号: