系统仿真学报 ›› 2024, Vol. 36 ›› Issue (9): 2171-2180.doi: 10.16182/j.issn1004731x.joss.23-0619

• 研究论文 • 上一篇    

融合改进A*算法与动态窗口法的路径规划研究

姬鹏1, 张新元1, 高帅轩2, 魏铄让3   

  1. 1.河北工程大学 机械与装备工程学院, 河北 邯郸 056038
    2.北京华卓精科科技股份有限公司, 北京 100176
    3.冀凯(河北)机电科技有限公司, 河北 石家庄 050000
  • 收稿日期:2023-05-24 修回日期:2023-07-21 出版日期:2024-09-15 发布日期:2024-09-30
  • 通讯作者: 张新元
  • 第一作者简介:姬鹏(1977-),男,博士,教授,研究方向为车辆系统动力学建模及仿真控制。
  • 基金资助:
    河北省引进留学人员(CL201704);河北省高等学校科学技术研究(ZD2019023)

Path Planning Based on Improved A* and Dynamic Window Approach

Ji Peng1, Zhang Xinyuan1, Gao Shuaixuan2, Wei Shuorang3   

  1. 1.School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China
    2.Beijing U-Precision Tech Co. , Ltd. , Beijing 100176, China
    3.Jikai(Hebei) Mechatronics Technology Co. , Ltd. , Shijiazhuang 050000, China
  • Received:2023-05-24 Revised:2023-07-21 Online:2024-09-15 Published:2024-09-30
  • Contact: Zhang Xinyuan

摘要:

针对传统A*算法搜索效率较低、拐点冗余和易碰撞等问题,提出了一种融合改进A*算法与动态窗口法的智能车辆路径规划算法。改进了搜索点筛选方法、优化了评价函数、根据拐点间的斜率值筛选出关键拐点,并去除冗杂拐点。在优化后的每两个关键拐点间采用兼备速度与安全的优化动态窗口法进行局部避障。实验表明:该算法相较传统A*算法在检索速度上提升了45%,拐点数量减少了91%,提高了路径平滑度。融合后的算法能在确保全局路径最优的情况下达到局部最优,可以实现实时避障。

关键词: 优化A*算法, 优化动态窗口法, 融合算法, 路径规划, 实时避障

Abstract:

In response to the low efficiency, redundant turning points, and collision issues of the traditional A* algorithm, a smart vehicle path planning algorithm that integrates an improved A* algorithm with a dynamic window approach has been proposed. The algorithm has enhanced the search point selection method, optimized the evaluation function, selected key turning points based on the slope values between turning points, and removed redundant turning points. Between every two optimized key turning points, a dynamic window approach that balances speed and safety is used for local obstacle avoidance. Experiments show that compared to the traditional A* algorithm, this algorithm has increased retrieval speed by 45%, reduced turning points by 91%, and improved path smoothness. The integrated algorithm can achieve local optimality while ensuring global path optimality and can achieve real-time obstacle avoidance.

Key words: optimization A* algorithm, optimizing dynamic window approach, fusion algorithms, path planning, real time obstacle avoidance

中图分类号: