1 |
Xu Cheng, Xu Ming, Yin Chanjuan. Optimized Multi-UAV Cooperative Path Planning Under the Complex Confrontation Environment[J]. Computer Communications, 2020, 162: 196-203.
|
2 |
Xia Zhaoyue, Du Jun, Wang Jingjing, et al. Multi-agent Reinforcement Learning Aided Intelligent UAV Swarm for Target Tracking[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 931-945.
|
3 |
Choi Y, Choi Y, Briceno S, et al. Energy-constrained Multi-UAV Coverage Path Planning for an Aerial Imagery Mission Using Column Generation[J]. Journal of Intelligent & Robotic Systems, 2020, 97(1): 125-139.
|
4 |
Duchoň František, Babinec Andrej, Kajan Martin, et al. Path Planning with Modified a Star Algorithm for a Mobile Robot[J]. Procedia Engineering, 2014, 96: 59-69.
|
5 |
Yuan Chengren, Liu Guifeng, Zhang Wenqun, et al. An Efficient RRT Cache Method in Dynamic Environments for Path Planning[J]. Robotics and Autonomous Systems, 2020, 131: 103595.
|
6 |
李兆强, 张时雨. 基于快速RRT算法的三维路径规划算法研究[J]. 系统仿真学报, 2022, 34(3): 503-511.
|
|
Li Zhaoqiang, Zhang Shiyu. Research on 3D Path Planning Algorithm Based on Fast RRT Algorithm[J]. Journal of System Simulation, 2022, 34(3): 503-511.
|
7 |
Ravankar Ankit A, Ravankar Abhijeet, Emaru Takanori, et al. HPPRM: Hybrid Potential Based Probabilistic Roadmap Algorithm for Improved Dynamic Path Planning of Mobile Robots[J]. IEEE Access, 2020, 8: 221743-221766.
|
8 |
邓向阳, 张立民, 方伟, 等. 基于双向汇聚引导蚁群算法的机器人路径规划[J]. 系统仿真学报, 2022, 34(5): 1101-1108.
|
|
Deng Xiangyang, Zhang Limin, Fang Wei, et al. Robot Path Planning Based on Bidirectional Aggregation Ant Colony Optimization[J]. Journal of System Simulation, 2022, 34(5): 1101-1108.
|
9 |
Ajeil Fatin H, Ibraheem Kasim Ibraheem, Sahib Mouayad A, et al. Multi-objective Path Planning of an Autonomous Mobile Robot Using Hybrid PSO-MFB Optimization Algorithm[J]. Applied Soft Computing, 2020, 89: 106076.
|
10 |
Song Baoye, Wang Zidong, Zou Lei. An Improved PSO Algorithm for Smooth Path Planning of Mobile Robots Using Continuous High-degree Bezier Curve[J]. Applied Soft Computing, 2021, 100: 106960.
|
11 |
Liu Yiyang, Yan Shuaihua, Zhao Yang, et al. Improved Dyna-Q: A Reinforcement Learning Method Focused via Heuristic Graph for AGV Path Planning in Dynamic Environments[J]. Drones, 2022, 6(11): 365.
|
12 |
Chen Pengzhan, Pei Jiean, Lu Weiqing, et al. A Deep Reinforcement Learning Based Method for Real-time Path Planning and Dynamic Obstacle Avoidance[J]. Neurocomputing, 2022, 497: 64-75.
|
13 |
Chu Zhenzhong, Wang Fulun, Lei Tingjun, et al. Path Planning Based on Deep Reinforcement Learning for Autonomous Underwater Vehicles Under Ocean Current Disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 108-120.
|
14 |
Fu Bing, Chen Lin, Zhou Yuntao, et al. An Improved A* Algorithm for the Industrial Robot Path Planning with High Success Rate and Short Length[J]. Robotics and Autonomous Systems, 2018, 106: 26-37.
|
15 |
Zhang Zhen, Wu Defeng, Gu Jiadong, et al. A Path-planning Strategy for Unmanned Surface Vehicles Based on an Adaptive Hybrid Dynamic Stepsize and Target Attractive Force-RRT Algorithm[J]. Journal of Marine Science and Engineering, 2019, 7(5): 132.
|
16 |
Cao Kai, Cheng Qian, Gao Song, et al. Improved PRM for Path Planning in Narrow Passages[C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway: IEEE, 2019: 45-50.
|
17 |
Liu Huan, Li Xiamiao, Fan Mingfeng, et al. An Autonomous Path Planning Method for Unmanned Aerial Vehicle Based on a Tangent Intersection and Target Guidance Strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3061-3073.
|
18 |
Fox D, Burgard W, Thrun S. The Dynamic Window Approach to Collision Avoidance[J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33.
|
19 |
Chang Lu, Shan Liang, Jiang Chao, et al. Reinforcement Based Mobile Robot Path Planning with Improved Dynamic Window Approach in Unknown Environment[J]. Autonomous Robots, 2021, 45(1): 51-76.
|
20 |
Zhong Xunyu, Tian Jun, Hu Huosheng, et al. Hybrid Path Planning Based on Safe A* Algorithm and Adaptive Window Approach for Mobile Robot in Large-scale Dynamic Environment[J]. Journal of Intelligent & Robotic Systems, 2020, 99(1): 65-77.
|
21 |
Han Sen, Wang Lei, Wang Yiting, et al. A Dynamically Hybrid Path Planning for Unmanned Surface Vehicles Based on Non-uniform Theta* and Improved Dynamic Windows Approach[J]. Ocean Engineering, 2022, 257: 111655.
|
22 |
魏立新, 张钰锟, 孙浩, 等. 基于改进蚁群和DWA算法的机器人动态路径规划[J]. 控制与决策, 2022, 37(9): 2211-2216.
|
|
Wei Lixin, Zhang Yukun, Sun Hao, et al. Robot Dynamic Path Planning Based on Improved Ant Colony and DWA Algorithm[J]. Control and Decision, 2022, 37(9): 2211-2216.
|
23 |
Li Yonggang, Jin Rencai, Xu Xiangrong, et al. A Mobile Robot Path Planning Algorithm Based on Improved A* Algorithm and Dynamic Window Approach[J]. IEEE Access, 2022, 10: 57736-57747.
|
24 |
Dai Jun, Li Dongfang, Zhao Junwei, et al. Autonomous Navigation of Robots Based on the Improved Informed-RRT∗ Algorithm and DWA[J]. Journal of Robotics, 2022, 2022(1): 3477265.
|
25 |
Fu Jinyu, Sun Guanghui, Yao Weiran, et al. On Trajectory Homotopy to Explore and Penetrate Dynamically of Multi-UAV[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24008-24019.
|
26 |
Yu Xiaobing, Li Chenliang, Yen G G. A Knee-guided Differential Evolution Algorithm for Unmanned Aerial Vehicle Path Planning in Disaster Management[J]. Applied Soft Computing, 2021, 98: 106857.
|
27 |
王洪斌, 尹鹏衡, 郑维, 等. 基于改进的A*算法与动态窗口法的移动机器人路径规划[J]. 机器人, 2020, 42(3): 346-353.
|
|
Wang Hongbin, Yin Pengheng, Zheng Wei, et al. Mobile Robot Path Planning Based on Improved A* Algorithm and Dynamic Window Method[J]. Robot, 2020, 42(3): 346-353.
|
28 |
Yang Dian, Su Chen, Wu Hang, et al. Construction of Novel Self-adaptive Dynamic Window Approach Combined with Fuzzy Neural Network in Complex Dynamic Environments[J]. IEEE Access, 2022, 10: 104375-104383.
|
29 |
张伟龙, 单梁, 常路, 等. 基于改进DWA的多无人水面艇分布式避碰算法[J]. 控制与决策, 2023, 38(4): 951-962.
|
|
Zhang Weilong, Shan Liang, Chang Lu, et al. Distributed Collision Avoidance Algorithm for Multiple Unmanned Surface Vessels Based on Improved DWA[J]. Control and Decision, 2023, 38(4): 951-962.
|
30 |
王永雄, 田永永, 李璇, 等. 穿越稠密障碍物的自适应动态窗口法[J]. 控制与决策, 2019, 34(5): 927-936.
|
|
Wang Yongxiong, Tian Yongyong, Li Xuan, et al. Self-adaptive Dynamic Window Approach in Dense Obstacles[J]. Control and Decision, 2019, 34(5): 927-936.
|
31 |
常路, 单梁, 戴跃伟, 等. 未知环境下基于改进DWA的多机器人编队控制[J]. 控制与决策, 2022, 37(10): 2524-2534.
|
|
Chang Lu, Shan Liang, Dai Yuewei, et al. Multi-robot Formation Control in Unknown Environment Based on Improved DWA[J]. Control and Decision, 2022, 37(10): 2524-2534.
|
32 |
Xu Ce, Xu Zhenbang, Xia Mingyi. Obstacle Avoidance in a Three-dimensional Dynamic Environment Based on Fuzzy Dynamic Windows[J]. Applied Sciences, 2021, 11(2): 504.
|