系统仿真学报 ›› 2025, Vol. 37 ›› Issue (1): 245-256.doi: 10.16182/j.issn1004731x.joss.23-1110

• 论文 • 上一篇    

基于改进启发式RRT的AUV路径规划

齐本胜1,2, 李岩1, 苗红霞1,2, 陈家林1, 李成林1   

  1. 1.河海大学,江苏 常州 213022
    2.江苏省输配电装备技术重点实验室,江苏 常州 213022
  • 收稿日期:2023-09-07 修回日期:2023-11-06 出版日期:2025-01-20 发布日期:2025-01-23
  • 第一作者简介:齐本胜(1969-),男,副教授,博士,研究方向为信息获取与处理。
  • 基金资助:
    常州市科技项目应用基础研究计划(CJ20220083);江苏省输配电装备技术重点实验室开放课题(2021JSSPD05)

Research on Path Planning Method for Autonomous Underwater Vehicles Based on Improved Informed RRT

Qi Bensheng1,2, Li Yan1, Miao Hongxia1,2, Chen Jialin1, Li Chenglin1   

  1. 1.Hohai University, Changzhou 213022, China
    2.Jiangsu Provincial Key Laboratory of Transmission and Distribution Equipment Technology, Changzhou 213022, China
  • Received:2023-09-07 Revised:2023-11-06 Online:2025-01-20 Published:2025-01-23

摘要:

针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点概率偏置采样策略与目标偏向扩展策略,可使目标节点在随机采样时成为采样点。在路径点扩展过程中,使非目标采样点的扩展结点位置偏向于目标点的方向,从而增强算法在随机采样与扩展过程中的目标搜索能力。为解决水下路径规划过程中存在过多无效搜索空间的问题,在随机采样过程中引入启发式采样策略,构建包含所有初始路径的采样空间子集,减小采样空间范围,从而提高算法的空间搜索效率。针对AUV在水下环境中抗洋流扰动能力不足的问题,采用速度矢量合成法,使AUV速度矢量与洋流速度矢量合成后指向期望路径的方向,从而抵消水流的影响。在山峰地形中叠加多个Lamb涡流模拟水下流场环境,进行多次仿真实验。实验结果表明:改进启发式RRT算法解决了采样过程中随机性问题,显著缩小了搜索空间,兼顾了路径的安全性与平滑性,并使AUV具有良好的抗洋流扰动能力。

关键词: 水下自主航行器, 路径规划, 偏向扩展, 启发式RRT, 速度矢量合成

Abstract:

In response to the autonomous underwater vehicle (AUV) path planning problem in complex underwater environments, an improved path planning algorithm based on Informed rapidly-exploring random trees (RRT) is proposed in this study. A target-biased sampling strategy and a target-biased extension strategy are employed to address the issue of lack of goal orientation in the sampling process, ensuring that target nodes become sampling points during random sampling. During path points extension, non-target sampling points are guided in the direction of the target point, thereby enhancing the algorithm's ability to search for the target during random sampling and extension processes. A heuristic sampling strategy is introduced during random sampling to tackle the problem of an abundance of invalid search spaces in underwater path planning. This strategy constructs a subset of the sampling space that includes all initial paths, thereby reducing the range of the sampling space and improving the spatial search efficiency of the algorithm. Finally, a velocity vector synthesis method is applied to address the issue of insufficient resistance to underwater flow disturbances. This method aligns the AUV's velocity vector with the desired path by synthesizing the AUV's velocity vector with the flow velocity vector. This effectively counteracts the impact of water currents. Multiple simulation experiments are conducted by superimposing Lamb vortex flow simulations on underwater terrain, and the results demonstrate that the enhanced informed RRT algorithm successfully mitigates randomness in the sampling process, significantly reduces the search space, balances path safety and smoothness, and equips the AUV with robust resistance to underwater flow disturbances.

Key words: autonomous underwater vehicle(AUV), path planning, expansion bias, informed RRT, velocity vector synthesis

中图分类号: