系统仿真学报 ›› 2024, Vol. 36 ›› Issue (7): 1509-1524.doi: 10.16182/j.issn1004731x.joss.23-0403

• 研究论文 •    

基于改进哈里斯鹰和B-spline曲线的无人机路径规划研究

黄志锋(), 刘媛华()   

  1. 上海理工大学 管理学院,上海 200082
  • 收稿日期:2023-04-09 修回日期:2023-05-10 出版日期:2024-07-15 发布日期:2024-07-12
  • 通讯作者: 刘媛华 E-mail:213491529@st.usst.edu.cn;liuyuanhua@st.usst.edu.cn
  • 第一作者简介:黄志锋(1998-),男,硕士生,研究方向为路径规划。E-mail:213491529@st.usst.edu.cn
  • 基金资助:
    国家自然科学基金(72071130)

UAV Path Planning Based on Improved Harris Hawk Algorithm and B-spline Curve

Huang Zhifeng(), Liu Yuanhua()   

  1. School of Management, University of Shanghai for Science and Technology, Shanghai 200082, China
  • Received:2023-04-09 Revised:2023-05-10 Online:2024-07-15 Published:2024-07-12
  • Contact: Liu Yuanhua E-mail:213491529@st.usst.edu.cn;liuyuanhua@st.usst.edu.cn

摘要:

针对无人机在动态环境中的全局路径规划问题,提出了一种改进哈里斯鹰优化算法。针对算法后期搜索性能不足等问题,提出自适应混沌和核心种群动态划分策略,提高算法后期的搜索能力;修改哈里斯鹰更新公式,引入黄金正弦策略,提高算法搜索效率;融合自适应动态云最优解扰动策略,提高算法跳出局部极值的能力;针对三维栅格路径规划问题,设置了一种估值函数,通过计算栅格到达终点的代价,帮助算法进行节点筛选,使算法能搜索到更短路径,并针对路径转角不平滑的问题,使用3次B-spline曲线对路径转角进行处理,使路径更适合无人机飞行。通过国际标准测试函数和在不同大小、不同复杂程度的静态、动态栅格地图进行仿真实验。实验结果显示,本文算法相较于对比算法,规划出的路径平均缩短了14.94%、转角数量平均减少了53.31%。

关键词: 哈里斯鹰优化算法, 三维路径规划, 无人机, 动态环境, 自适应

Abstract:

Aiming at the global path planning problem of unmanned aerial vehicles (UAVs) in dynamic environments, this paper proposes an improved Harris Hawk optimization algorithm. To address the problem of insufficient search performance in the later stage of the algorithm, an adaptive chaos and core population dynamic partitioning strategy is proposed to improve the searchability of the algorithm in the later stage. The Harris Hawk update formula is modified, and the golden sine strategy is introduced to improve the search efficiency of the algorithm. Then, an adaptive dynamic cloud optimal solution perturbation strategy is integrated to improve the ability of the algorithm to jump out of the local extremum. For the three-dimensional grid path planning problem, a valuation function is established. By calculating the cost of reaching the endpoint for each grid, the algorithm is aided in filtering nodes, allowing it to search for a shorter path. For the problem of the non-smooth path, the path angle is processed by using the cubic B-spline curvefor three times to make the path more suitable for UAV flight. The effectiveness of the improved algorithm is validated by simulation experiments on international standard test functions and static and dynamic grid maps of varying sizes and complexity. The experimental results demonstrate that the proposed algorithm significantly outperforms the control group algorithm. On average, the planned path is shortened by 14.94% and the number of corners is reduced by 53.31%.

Key words: Harris Hawk optimization(HHO), three-dimensional path planning, UAV, dynamic environment, self-adaption

中图分类号: