系统仿真学报 ›› 2024, Vol. 36 ›› Issue (9): 2149-2158.doi: 10.16182/j.issn1004731x.joss.23-0618

• 研究论文 • 上一篇    

基于视觉机器人障碍点云映射避障规划及仿真

霍韩淋1, 邹湘军1,2, 陈燕1, 周馨曌2, 陈明猷1, 李承恩1, 潘耀强1, 唐昀超3   

  1. 1.华南农业大学 工程学院, 广东 广州 510000
    2.佛山市中科农业机器人与智慧农业创新研究院, 广东 佛山 528000
    3.仲恺农业工程学院 城乡建设学院, 广东 广州 510080
  • 收稿日期:2023-05-24 修回日期:2023-06-25 出版日期:2024-09-15 发布日期:2024-09-30
  • 通讯作者: 唐昀超
  • 第一作者简介:霍韩淋(1999-),男,硕士生,研究方向为农业采摘机器人。
  • 基金资助:
    国家自然科学基金(32171909);东莞市2021年度省乡村振兴战略专项资金“大专项+任务清单”(20211800400013);广东省科学技术厅计划(2021A1313030016)

Visual Robot Obstacle Avoidance Planning and Simulation Using Mapped Point Clouds

Huo Hanlin1, Zou Xiangjun1,2, Chen Yan1, Zhou Xinzhao2, Chen Mingyou1, Li Chengen1, Pan Yaoqiang1, Tang Yunchao3   

  1. 1.College of Engineering, South China Agricultural University, Guangzhou 510000, China
    2.Foshan -Zhongke Innovation Research Institute of Intelligent Agriculture and Robotics, Foshan 528000, China
    3.College of Urban and rural Construction, Zhongkai College of Agricultural Engineering, Guangzhou 510080, China
  • Received:2023-05-24 Revised:2023-06-25 Online:2024-09-15 Published:2024-09-30
  • Contact: Tang Yunchao

摘要:

针对复杂非结构化果园环境下的视觉点云障碍物识别的数据量大、冗杂度高,严重影响采摘作业的实时性及效率,基于点云分割提出了一种点云压缩算法,旨在提升了点云障碍物的识别效率及环境自适应性。采用了基于Informed RRT*及结合逆投影算法Mapping-based Informed RRT*(M-Informed RRT*)降维求解采摘路径。通过构建一个强实时性和高鲁棒性的机器人“采样-感知-避障”一体化作业系统,实现了高效的障碍物识别和路径规划。ROS采摘机器人的实验数据证明了本算法的可行性,显著提升了采摘作业的效率。

关键词: 双目视觉, 路径规划, 点云映射, ROS仿真, 采摘避障

Abstract:

In response to the large and complex data volume and high redundancy of visual point cloud obstacle recognition in complex unstructured orchard environments, which severely impacts the real-time performance and efficiency of harvesting operations, a point cloud compression algorithm is proposed based on point cloud segmentation to enhance the efficiency of point cloud obstacle recognition and environmental adaptability. An Informed RRT* based approach is used combined with an inverse projection algorithm, mapping-based informed RRT*(M-Informed RRT*) to solve the harvesting path problem. By constructing a highly real-time and robust integrated robot system for sampling, perception, and obstacle avoidance, efficient obstacle recognition and path planning are achieved. Experimental data from ROS based picking robots demonstrates the feasibility of this algorithm and significantly improves the efficiency of harvesting operations.

Key words: binocular vision, path planning, point cloud segmentation, ROS simulation, picking obstacle avoidance

中图分类号: