1 |
Luo Fanming, Jiang Shengyi, Yu Yang, et al. Adapt to Environment Sudden Changes by Learning a Context Sensitive Policy[C]//Thirty-Sixth AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2022: 7637-7646.
|
2 |
Fozilov Khusniddin, Colan Jacinto, Sekiyama Kosuke, et al. Toward Autonomous Robotic Minimally Invasive Surgery: A Hybrid Framework Combining Task-motion Planning and Dynamic Behavior Trees[J]. IEEE Access, 2023, 11: 91206-91224.
|
3 |
伍文迪. 基于行为树的群体机器人协同技术研究[D]. 长沙: 国防科技大学, 2020.
|
|
Wu Wendi. Research on Collaborative Technology of Swarm Robots Based on Behavior Tree[D]. Changsha: National University of Defense Technology, 2020.
|
4 |
Li Ning, Jiang Hao, Li Chunpeng, et al. Towards Adaptive Behavior Trees for Robot Task Planning[C]//2022 China Automation Congress (CAC). Piscataway: IEEE, 2022: 6720-6725.
|
5 |
Ahmad Faseeh, Mayr Matthias, Krueger Volker. Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs) to Task Variations[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2023: 10133-10140.
|
6 |
David Cáceres Domínguez, Iannotta Marco, Stork Johannes A, et al. A Stack-of-tasks Approach Combined with Behavior Trees: A New Framework for Robot Control[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 12110-12117.
|
7 |
Colledanchise Michele, Almeida Diogo, Ögren Petter. Towards Blended Reactive Planning and Acting Using Behavior Trees[C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2019: 8839-8845.
|
8 |
钟灿灿, 陈万米. 移动机器人的混合式路径规划算法研究[J]. 自动化仪表, 2021, 42(9): 61-66.
|
|
Zhong Cancan, Chen Wanmi. Research on Hybrid Path Planning Algorithm for Mobile Robots[J]. Process Automation Instrumentation, 2021, 42(9): 61-66.
|
9 |
华洪. 基于改进A*算法的自主移动机器人路径规划方法研究[D]. 南京: 南京理工大学, 2021.
|
10 |
史殿习, 苏雅倩文, 李宁, 等. 基于行为树调度的多无人机未知室内空间探索方法[J]. 计算机科学, 2022, 49(增2): 71-81.
|
|
Shi Dianxi, Su Yaqianwen, Li Ning, et al. Multi-UAV Cooperative Exploring for Large Unknown Indoor Environment Based on Behavior Tree[J]. Computer Science, 2022, 49(S2): 71-81.
|
11 |
张琪. 学习驱动的CGF决策行为建模方法研究[D]. 长沙: 国防科技大学, 2018.
|
|
Zhang Qi. Research on Learning Driven Behavior Modeling Methods for Decision Making of Computer Generated Forces(CGFs)[D]. Changsha: National University of Defense Technology, 2018.
|
12 |
冷静. 面向实时避碰的无人水面机器人在线路径规划方法[D]. 北京: 中国科学院大学, 2014.
|
|
Leng Jing. Online Path Planning for Unmanned Surface Vehicles for Real-time Obstacle Avoidance[D]. Beijing: University of Chinese Academy of Sciences, 2014.
|
13 |
Gustavsson Oscar, Iovino Matteo, Styrud Jonathan, et al. Combining Context Awareness and Planning to Learn Behavior Trees from Demonstration[C]//2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). Piscataway: IEEE, 2022: 1153-1160.
|
14 |
Leonardo Henrique Moreira, Célia Ghedini Ralha. Method for Evaluating Plan Recovery Strategies in Dynamic Multi-agent Environments[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2023, 35(8): 1225-1249.
|
15 |
Pezzato Corrado, Carlos Hernández Corbato, Bonhof Stefan, et al. Active Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics[J]. IEEE Transactions on Robotics, 2023, 39(2): 1050-1069.
|
16 |
Ruiz-Celada Oriol, Verma Parikshit, Diab M, et al. Automating Adaptive Execution Behaviors for Robot Manipulation[J]. IEEE Access, 2022, 10: 123489-123497.
|
17 |
唐昀超, 祁少军, 朱立学, 等. 移动机器人避障运动研究[J]. 系统仿真学报, 2024, 36(1): 1-26.
|
|
Tang Yunchao, Qi Shaojun, Zhu Lixue, et al. Obstacle Avoidance Motion in Mobile Robotics[J]. Journal of System Simulation, 2024, 36(1): 1-26.
|
18 |
柳佳. 移动机器人路径规划和避障算法研究[D]. 武汉: 武汉理工大学, 2022.
|
|
Liu Jia. Research on Path Planning and Obstacle Avoidance Algorithm of Mobile Robot[D]. Wuhan: Wuhan University of Technology, 2022.
|