1 |
林韩熙, 向丹, 欧阳剑, 等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用, 2021, 57(18): 38-48.
|
|
Lin Hanxi, Xiang Dan, Ouyang Jian, et al. Review of Path Planning Algorithms for Mobile Robots[J]. Computer Engineering and Applications, 2021, 57(18): 38-48.
|
2 |
Tan Bin, Peng Yinyin, Lin Jiugen. A Local Path Planning Method Based on Q-learning[C]//2021 International Conference on Signal Processing and Machine Learning (CONF-SPML). Piscataway, NJ, USA: IEEE, 2021: 80-84.
|
3 |
徐晓苏, 袁杰. 基于改进强化学习的移动机器人路径规划方法[J]. 中国惯性技术学报, 2019, 27(3): 314-320.
|
|
Xu Xiaosu, Yuan Jie. Path Planning for Mobile Robot Based on Improved Reinforcement Learning Algorithm[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 314-320.
|
4 |
Ee Soong Low, Ong Pauline, Kah Chun Cheah. Solving the Optimal Path Planning of a Mobile Robot Using Improved Q-learning[J]. Robotics and Autonomous Systems, 2019, 115: 143-161.
|
5 |
毛国君, 顾世民. 改进的Q-Learning算法及其在路径规划中的应用[J]. 太原理工大学学报, 2021, 52(1): 91-97.
|
|
Mao Guojun, Gu Shimin. An Improved Q-learning Algorithm and Its Application in Path Planning[J]. Journal of Taiyuan University of Technology, 2021, 52(1): 91-97.
|
6 |
田晓航, 霍鑫, 周典乐, 等. 基于蚁群信息素辅助的Q学习路径规划算法[J]. 控制与决策, 2023, 38(12): 3345-3353.
|
|
Tian Xiaohang, Huo Xin, Zhou Dianle, et al. Ant Colony Pheromone Aided Q-learning Path Planning Algorithm[J]. Control and Decision, 2023, 38(12): 3345-3353.
|
7 |
Peng Jing, Williams R J. Incremental Multi-step Q-learning[J]. Machine Learning, 1996, 22(1): 283-290.
|
8 |
唐恒亮, 唐滋芳, 董晨刚, 等. 基于启发式强化学习的AGV路径规划[J]. 北京工业大学学报, 2021, 47(8): 895-903.
|
|
Tang Hengliang, Tang Zifang, Dong Chengang, et al. AGV Path Planning Based on Heuristic Reinforcement Learning[J]. Journal of Beijing University of Technology, 2021, 47(8): 895-903.
|
9 |
付虹, 王国志, 柯坚, 等. 基于启发式Q(λ)学习的铁路绝缘子定位研究[J]. 铁道标准设计, 2018, 62(4): 151-155.
|
|
Fu Hong, Wang Guozhi, Ke Jian, et al. Research on Location of Railway Insulators Based on Heuristic Q(λ) Learning[J]. Railway Standard Design, 2018, 62(4): 151-155.
|
10 |
闫丰亭, 贾金原. DP-Q(λ):大规模Web3D场景中Multi-agent实时路径规划算法[J]. 系统仿真学报, 2019, 31(1): 16-26.
|
|
Yan Fengting, Jia Jinyuan. DP-Q(λ): Real-time Path Planning for Multi-agent in Large-scale Web3D Scene[J]. Journal of System Simulation, 2019, 31(1): 16-26.
|
11 |
余涛, 王宇名, 甄卫国, 等. 基于多步回溯Q学习的自动发电控制指令动态优化分配算法[J]. 控制理论与应用, 2011, 28(1): 58-64.
|
|
Yu Tao, Wang Yuming, Zhen Weiguo, et al. Multi-step Backtrack Q-learning Based Dynamic Optimal Algorithm for Auto Generation Control Order Dispatch[J]. Control Theory & Applications, 2011, 28(1): 58-64.
|
12 |
傅启明, 刘全, 王辉, 等. 一种基于线性函数逼近的离策略Q(λ)算法[J]. 计算机学报, 2014, 37(3): 677-686.
|
|
Fu Qiming, Liu Quan, Wang Hui, et al. A Novel off Policy Q(λ) Algorithm Based on Linear Function Approximation[J]. Chinese Journal of Computers, 2014, 37(3): 677-686.
|
13 |
陈圣磊, 吴慧中, 肖亮, 等. 基于Metropolis准则的多步Q学习算法与性能仿真[J]. 系统仿真学报, 2007, 19(6): 1284-1287.
|
|
Chen Shenglei, Wu Huizhong, Xiao Liang, et al. Metropolis Policy-based Multi-step Q learning Algorithm and Performance Simulation[J]. Journal of System Simulation, 2007, 19(6): 1284-1287.
|
14 |
刘仕超. 基于强化学习的移动机器人路径规划研究[D]. 青岛: 山东科技大学, 2017.
|
|
Liu Shichao. The Research of Mobile Robot Patn Planning Based on Reinforcement Learning[D]. Qingdao: Shandong University of Science and Technology, 2017.
|
15 |
李涛, 赵宏生. 基于进化蚁群算法的移动机器人路径优化[J]. 控制与决策, 2023, 38(3): 612-620.
|
|
Li Tao, Zhao Hongsheng. Path Optimization for Mobile Robot Based on Evolutionary Ant Colony Algorithm[J]. Control and Decision, 2023, 38(3): 612-620.
|
16 |
汪荣贵, 杨娟, 薛丽霞. 机器学习及其应用[M]. 北京: 机械工业出版社, 2019.
|
17 |
余涛, 胡细兵, 刘靖. 基于多步回溯Q(λ)学习算法的多目标最优潮流计算[J]. 华南理工大学学报(自然科学版), 2010, 38(10): 139-145.
|
|
Yu Tao, Hu Xibing, Liu Jing. Multi-objective Optimal Power Flow Calculation Based on Multi-step Q(λ) Learning Algorithm[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(10): 139-145.
|
18 |
马朋委. Q_learning强化学习算法的改进及应用研究[D]. 淮南: 安徽理工大学, 2016.
|
|
Ma Pengwei. The Improvement and Application of Reinforcement Learning Algorithm Research[D]. Huainan: Anhui University of Science& Technology, 2016.
|
19 |
Yang Xinshe. Flower Pollination Algorithm for Global Optimization[C]//The 11th International Conference on Unconventional Computation and Natural Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 240-249.
|
20 |
Sutton R S, Barto A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: The MIT Press, 2018.
|