系统仿真学报 ›› 2025, Vol. 37 ›› Issue (1): 257-270.doi: 10.16182/j.issn1004731x.joss.23-1089

• 论文 • 上一篇    

基于多尺度A*与优化DWA算法融合的移动机器人路径规划

许建民1,2, 宋雷1,2, 邓冬冬1,2, 陈尧箬1,2, 杨炜1,2   

  1. 1.厦门理工学院 机械与汽车工程学院,福建 厦门 361024
    2.福建省客车先进设计与制造重点实验室,福建 厦门 361024
  • 收稿日期:2023-09-05 修回日期:2023-11-01 出版日期:2025-01-20 发布日期:2025-01-23
  • 第一作者简介:许建民(1981-),男,副教授,博士,研究方向为移动机器人路径规划,汽车空气动力学,新能源汽车,精密减速器等。
  • 基金资助:
    福建省自然科学基金面上项目(2020J01269);福建省客车先进设计与制造重点实验室开放基金

Path Planning of Mobile Robot Based on the Integration of Multi-scale A* and Optimized DWA Algorithm

Xu Jianmin1,2, Song Lei1,2, Deng Dongdong1,2, Chen Yaoruo1,2, Yang Wei1,2   

  1. 1.Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
    2.Fujian Provincial Key Laboratory of Advanced Design and Manufacturing for Bus Coach, Xiamen 361024, China
  • Received:2023-09-05 Revised:2023-11-01 Online:2025-01-20 Published:2025-01-23

摘要:

为解决传统A*算法与动态窗口法面对大规模复杂环境路径规划时,计算和时间成本的急剧上升以及灵活性较差的问题,提出了一种基于多尺度地图法的A*算法和改进DWA算法的融合算法。建立多尺度地图集并在A*算法的启发函数中增加障碍物占比因子,在粗尺度地图利用A*算法计算最优路径,将其映射到细尺度地图上进行二次A*算法并通过Floyd算法进行节点优化,删除冗余节点、提高路径的平滑度。增加了航向角自适应调整策略和停车等待状态来优化动态窗口法,提高灵活性。将A*算法的关键点作为动态窗口法的局部目标点,并在轨迹上有障碍物时再次规划,实现两种算法的融合。ROS仿真和实车实验结果表明改进的A*算法计算时间显著减少,在20 m×40 m的地图中减少98%,改进的融合算法大幅提高了机器人在动态环境下的平滑性和灵活性,可以有效解决传统融合算法存在的问题。

关键词: 移动机器人, 路径规划, A*算法, 动态窗口法, ROS

Abstract:

In order to solve the problems of sharply increasing computational and time costs, as well as poor flexibility of the traditional A* algorithm and dynamic window approach (DWA) in the face of large-scale complex environmental path planning, a fusion algorithm based on the A* algorithm of the multi-scale map approach(MMA) and the improved DWA algorithm is proposed. A multi-scale map set is established and an obstacle proportion factor is added to the heuristic function of the A* algorithm. The A* algorithm is used to calculate the optimal path on the coarse-scale map, and the optimal path is mapped onto the fine-scale map for quadratic A* algorithm planning. The Floyd algorithm is used to optimize the nodes, remove redundant nodes, and improve the smoothness of the path. In addition, the heading angle adaptive adjustment strategy and parking wait state are added to optimize the dynamic window method to improve flexibility. The key points of the A* algorithm are used as local target points of the dynamic window method and replanned when there are obstacles on the path to realize the integration of the two algorithms. The results of ROS simulation and actual vehicle experiments show that the computation time of the improved A* algorithm is significantly reduced by 98% in 20×40 maps and the improved fusion algorithm dramatically improves the smoothing and flexibility of the robot in dynamic environments, and can effectively solve the problems existing in the traditional fusion algorithm

Key words: mobile robots, path planning, A* algorithm, dynamic window approach, ROS

中图分类号: