系统仿真学报 ›› 2024, Vol. 36 ›› Issue (5): 1043-1060.doi: 10.16182/j.issn1004731x.joss.23-0053

• 研究论文 •    下一篇

面向移动机器人大视角运动的图神经网络视觉SLAM算法

刘金辉1(), 陈孟元1,2(), 韩朋朋1, 陈何宝1, 张玉坤1   

  1. 1.安徽工程大学 电气工程学院,安徽 芜湖 241000
    2.高端装备先进感知与智能控制教育部重点实验室,安徽 芜湖 241000
  • 收稿日期:2023-01-15 修回日期:2023-04-06 出版日期:2024-05-15 发布日期:2024-05-21
  • 通讯作者: 陈孟元 E-mail:3246580992@qq.com;mychen@ahpu.edu.cn
  • 第一作者简介:刘金辉(1997-),男,硕士生,研究方向为视觉SLAM。E-mail:3246580992@qq.com
  • 基金资助:
    国家自然科学基金(61903002);安徽省高校协同创新项目(GXXT-2021-050);安徽省高校杰出青年科研项目(2022AH020065);安徽省学术和技术带头人后备人选科研活动经费择优资助(2022H292)

A Graph Neural Network Visual SLAM Algorithm for Large-angle View Motion

Liu Jinhui1(), Chen Mengyuan1,2(), Han Pengpeng1, Chen Hebao1, Zhang Yukun1   

  1. 1.School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
    2.Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Wuhu 241000, China
  • Received:2023-01-15 Revised:2023-04-06 Online:2024-05-15 Published:2024-05-21
  • Contact: Chen Mengyuan E-mail:3246580992@qq.com;mychen@ahpu.edu.cn

摘要:

针对移动机器人在大视角运动下光照变化剧烈或遭遇纹理稀疏场景易出现特征点提取困难,极端角度下特征难以匹配导致对极几何计算误差较大问题,提出一种融合改进图神经网络的视觉SLAM算法。基于先验位置估计的特征提取网络,通过先验位置估计实现图像特征点快速均匀检测与描述,构建真实准确的特征点信息。基于图注意力机制的特征匹配网络,通过消息传递图神经网络聚合特征点信息,使用自我与联合注意力机制对前后图像帧分权重特征匹配。将特征提取与匹配图神经网络与ORB-SLAM2系统后端非线性优化、闭环修正、局部建图模块融合,提出一个完整的单目视觉GNN-SLAM系统。实验结果表明:该算法在KITTI数据集上与ORB-SLAM2算法相比,绝对轨迹误差降低37.59%,相对位姿误差降低19.67%。

关键词: 同步定位与地图构建, 大视角运动, 图神经网络, 图注意力机制, 移动机器人

Abstract:

Aimed at the difficulty of feature point extraction in mobile robots with drastic changes in illumination or sparse texture scenes under large-angle view motion, difficulty in matching features at extreme angles leads to large errors in Epipolar Geometry calculations,a fusion of an improved graph neural network based visual SLAM algorithm (GNN-SLAM)is proposed.The priori location estimation feature extraction network is proposed to achieve fast and uniform detection and description of image feature points by a priori location estimation and to construct real and accurate feature point information.The graph attention mechanism feature matching network is proposed to aggregate feature point information through message passing graph neural network, and then use self and joint attention mechanism for before and after image frame weighted feature matching.The feature extraction and matching map neural network is fused with the back-end nonlinear optimization, closed-loop correction, and local mapping modules of the ORB-SLAM2 system to propose a complete monocular vision GNN-SLAM system. The experimental results show that:compared with the ORB-SLAM2 algorithm on the KITTI dataset, the absolute trajectory error of this algorithm is reduced by 37.59%, and the relative pose error is reduced by 19.67%.

Key words: SLAM, large-angle view motion, graph neural network, graph attention mechanism, mobile robot

中图分类号: