系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1542-1554.doi: 10.16182/j.issn1004731x.joss.24-0126

• 论文 • 上一篇    

基于并行行为树架构的自动驾驶汽车行为控制技术研究

袁健钞, 杨硕, 张琪, 李革   

  1. 国防科技大学 系统工程学院,湖南 长沙,410073
  • 收稿日期:2024-02-02 修回日期:2024-04-25 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 杨硕
  • 第一作者简介:袁健钞(2001-),男,硕士生,研究方向为智能软件技术。
  • 基金资助:
    国防科技大学青年自主创新科学基金(ZK2023-36)

Research on Behavior Control Techniques for Autonomous Vehicles Based on Parallel Behavior Tree Architecture

Yuan Jianchao, Yang Shuo, Zhang Qi, Li Ge   

  1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2024-02-02 Revised:2024-04-25 Online:2025-06-20 Published:2025-06-18
  • Contact: Yang Shuo

摘要:

针对传统串行行为树在自动驾驶汽车控制中高碰撞率和低效率问题,探讨了基于改进并行行为树架构的解决方案以实现安全行为控制。提出了动态路况下的安全行为控制策略,并构建了观察、决策、移动的行为模型及其时序约束关系;提出了一种改进的并行行为树控制架构,通过并行控制节点实现行为的并行执行与实时交互,提升决策控制的实时性。结果表明:与传统串行行为树相比,并行行为树架构将碰撞率降低了23%,平均速度提高了5.4%,响应时间减少了56.6%;与基于模型预测控制的架构相比,碰撞率降低了2%,平均速度提升了1.6%,响应时间减少了15.7%

关键词: 自动驾驶汽车, 行为树控制架构, 并行控制节点, 安全行为控制策略

Abstract:

Aiming at the problem of high collision rate and low efficiency of traditional serial behavior tree in autonomous vehicle control, a solution based on improved parallel behavior tree architecture is discussed to achieve safe behavior control. A safety behavior control strategy under dynamic road conditions is proposed, and behavior models for observation, decision-making, and movement are constructed, as well as their temporal constraint relationships; an improved parallel behavior tree control architecture is proposed, which achieves parallel execution and real-time interaction of behaviors through parallel control nodes, improving the real-time performance of decision control. The results show that compared with traditional serial behavior trees, the parallel behavior tree architecture reduces collision rates by 23%, increases average speed by 5.4%, and reduces response time by 56.6%; compared with the architecture based on MPC, the collision rate is reduced by 2%, the average speed increased by 1.6%, and the response time is reduced by 15.7%

Key words: autonomous vehicles, behavior tree control architecture, parallel control nodes, safe behavior control strategy

中图分类号: