1 |
Lou Jungang, Jiang Yunliang, Shen Qing, et al. Probabilistic Regularized Extreme Learning for Robust Modeling of Traffic Flow Forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 1732-1741.
|
2 |
Gong Yongshun, Li Zhibin, Zhang Jian, et al. Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4020-4027.
|
3 |
Sang Keon Lee, Heeseo Rain Kwon, Ah Cho Hee, et al. International Case Studies of Smart Cities: Namyangju, Republic of Korea[EB/OL]. (2016-06) [2023-08-05]. .
|
4 |
Zhou Xinchi, Zhou Dongzhan, Liu Lingbo. TRUFM: A Transformer-guided Framework for Fine-grained Urban Flow Inference[C]//Neural Information Processing. Cham: Springer International Publishing, 2021: 262-273.
|
5 |
Zhong Ting, Yu Haoyang, Li Rongfan, et al. Probabilistic Fine-grained Urban Flow Inference with Normalizing Flows[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2022: 3663-3667.
|
6 |
Qu Hao, Gong Yongshun, Chen Meng, et al. Forecasting Fine-grained Urban Flows via Spatio-temporal Contrastive Self-supervision[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8008-8023.
|
7 |
Zheng Yu, Capra L, Wolfson O, et al. Urban Computing: Concepts, Methodologies, and Applications[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 38.
|
8 |
Li Jiyue, Wang Senzhang, Zhang Jiaqiang, et al. Fine-grained Urban Flow Inference with Incomplete Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5851-5864.
|
9 |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6): 84-90.
|
10 |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale[C]//ICLR 2021. New York: ICLR, 2020: 3458.
|
11 |
Liang Yuxuan, Ouyang Kun, Jing Lin, et al. UrbanFM: Inferring Fine-grained Urban Flows[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 3132-3142.
|
12 |
Zhou Fan, Li Liang, Zhong Ting, et al. Enhancing Urban Flow Maps via Neural ODEs[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. California: IJCAI, 2020: 1295-1302.
|
13 |
Zhou Fan, Jing Xin, Li Liang, et al. Inferring High-resolutional Urban Flow with Internet of Mobile Things[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2021: 7948-7952.
|
14 |
Ouyang Kun, Liang Yuxuan, Liu Ye, et al. Fine-grained Urban Flow Inference[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(6): 2755-2770.
|
15 |
Liang Yuxuan, Ouyang Kun, Wang Yiwei, et al. Revisiting Convolutional Neural Networks for Citywide Crowd Flow Analytics[C]//Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2021: 578-594.
|
16 |
Liu Lingbo, Liu Mengmeng, Li Guanbin, et al. Road Network-guided Fine-grained Urban Traffic Flow Inference[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, 2023. (2023-11-03) [2023-11-08]. .
|
17 |
Yu Haoyang, Xu Xovee, Zhong Ting, et al. Overcoming Forgetting in Fine-grained Urban Flow Inference Via Adaptive Knowledge Replay[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 5393-5401.
|
18 |
Haris Muhammad, Shakhnarovich Greg, Ukita Norimichi. Deep Back-projection Networks for Super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1664-1673.
|
19 |
Huang Gao, Liu Zhuang, Laurens Van Der Maaten, et al. Densely Connected Convolutional Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 2261-2269.
|
20 |
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
21 |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778.
|
22 |
Yang Lingfeng, Li Xiang, Song Renjie, et al. Dynamic MLP for Fine-grained Image Classification by Leveraging Geographical and Temporal Information[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 10935-10944.
|
23 |
Kingma D P, Ba Lei. Adam: A Method for Stochastic Optimization[EB/OL]. (2017-01-30) [2023-11-10]. .
|