系统仿真学报 ›› 2024, Vol. 36 ›› Issue (10): 2265-2276.doi: 10.16182/j.issn1004731x.joss.23-0638

• 论文 • 上一篇    

基于改进动态窗口的车库AGV路径规划及仿真

马宗方, 张琳旋, 宋琳, 王嘉   

  1. 西安建筑科技大学 信息与控制工程学院,陕西 西安 710055
  • 收稿日期:2023-05-28 修回日期:2023-08-01 出版日期:2024-10-15 发布日期:2024-10-18
  • 通讯作者: 张琳旋
  • 第一作者简介:马宗方(1980-),男,教授,博士,研究方向为智能信息处理、机器视觉及其工业应用等。
  • 基金资助:
    国家自然科学基金面上项目(62276207);陕西省技术创新引导专项基金(2023GXLH-055)

Garage AGV Path Planning and Simulation Based on Improved DWA

Ma Zongfang, Zhang Linxuan, Song Lin, Wang Jia   

  1. College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2023-05-28 Revised:2023-08-01 Online:2024-10-15 Published:2024-10-18
  • Contact: Zhang Linxuan

摘要:

针对在智能车库环境下,移动机器人(AGV)在作业过程中面临着复杂路径环境下的路径规划和实时避障,提出一种改进的蚁群算法与动态窗口法(DWA)相结合的混合算法。在全局规划中引入自适应调整信息素挥发系数,融合角度参数建立车库方向信息素矩阵,增大目标点引导能力,扩大蚂蚁的方向选择性;在局部规划中设计基于椭圆方程的障碍物距离评价子函数的改进动态窗口法,并提取改进蚁群算法的全局关键节点作为新增的路径评价子函数,在全局路径的约束下,保持动态规划的最优性。仿真结果表明:改进算法较传统算法能够较好地应对突发的动静态障碍物,更符合AGV实际作业过程中在多重环境因素的影响下的动态规划要求。

关键词: 车库AGV, 蚁群算法, 动态窗口法, 动静态避障, 路径规划, 椭圆方程

Abstract:

Aiming at the path planning and real-time obstacle avoidance of AGV in complex path environment of intelligent garage, an improved hybrid algorithm combining ant colony algorithm and dynamic window method is proposed. In the global planning, the adaptive adjustment of pheromone volatilization coefficient and the fusion of angle parameters are introduced to establish the garage direction pheromone matrix to increase the guidance ability of target points, expand the direction selectivity of ants. In the local planning, the improved DWA of the obstacle distance evaluation sub-function based on elliptic equation is designed. By extracting the global path node of the improved ant colony algorithm as the new path evaluation sub-function, and under the global path constrains, the optimality of dynamic planning is realized. The system simulation results show that the algorithm can reasonably cars deal with the dynamic and static obstacles, more in line with the requirements of dynamic programming under the influence of multiple environmental factors in the actual operation of AGV.

Key words: garage AGV, ant colony, DWA, dynamic and static obstacle avoidance, path planning, elliptic equation

中图分类号: