1 |
陈玉娇, 曾诗雨, 和红杰, 等. 工业机器人码垛数字孪生系统的研究与实现[J]. 计算机集成制造系统, 2023, 29(6): 1930-1940.
|
|
Chen Yujiao, Zeng Shiyu, He Hongjie, et al. Research and Implementation of Digital Twin System for Industrial Robot Palletizing[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1930-1940.
|
2 |
Olabi Adel, Damak Mohamed, Bearee Richard, et al. Improving the Accuracy of Industrial Robots by Offline Compensation of Joints Errors[C]//2012 IEEE International Conference on Industrial Technology. Piscataway, NJ, USA: IEEE, 2012: 492-497.
|
3 |
Zhong Dong, Xia Zhelei, Zhu Yian, et al. Overview of Predictive Maintenance Based on Digital Twin Technology[J]. Heliyon, 2023, 9(4): e14534.
|
4 |
吴雁, 王晓军, 何勇, 等. 数字孪生在制造业中的关键技术及应用研究综述[J]. 现代制造工程, 2021(9): 137-145.
|
|
Wu Yan, Wang Xiaojun, He Yong, et al. Review on the Technology and Application of Digital Twin in Manufacturing Industry[J]. Modern Manufacturing Engineering, 2021(9): 137-145.
|
5 |
黄培. 数字孪生在制造业的应用[J]. 中国工业和信息化, 2020(7): 20-26.
|
6 |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
|
|
Tao Fei, Liu Weiran, Zhang Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
|
7 |
陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25(10): 2405-2418.
|
|
Tao Fei, Ma Xin, Hu Tianliang, et al. Research on Digital Twin Standard System[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418.
|
8 |
王剑, 王好臣, 李学伟, 等. 基于OPC UA的数字孪生车间信息物理融合系统[J]. 现代制造工程, 2023(4): 43-50.
|
|
Wang Jian, Wang Haochen, Li Xuewei, et al. Digital Twin Workshop Information Physical Fusion System Based on OPC UA[J]. Modern Manufacturing Engineering, 2023(4): 43-50.
|
9 |
侯正航, 何卫平. 基于数字孪生的飞机装配状态巡检机器人的建模与控制[J]. 计算机集成制造系统, 2021, 27(4): 981-989.
|
|
Hou Zhenghang, He Weiping. Modeling and Control of Digital Twin-based Aircraft Assembly State Inspection Robot[J]. Computer Integrated Manufacturing Systems, 2021, 27(4): 981-989.
|
10 |
李幸刚, 张亚萍, 杨雨薇. 一种基于邻域扩展聚类的去噪算法[J]. 系统仿真学报, 2017, 29(11): 2663-2669, 2677.
|
|
Li Xinggang, Zhang Yaping, Yang Yuwei. Denoising Algorithm Based on Neighborhood Expansion Clustering[J]. Journal of System Simulation, 2017, 29(11): 2663-2669, 2677.
|
11 |
吴金保, 孙晶晶. 工业机器人点焊系统解析[J]. 日用电器, 2018(9): 88-92.
|
|
Wu Jinbao, Sun Jingjing. Analysis on Spot Welding System of Industrial Robot[J]. Electrical Appliances, 2018(9): 88-92.
|
12 |
Pellegrinelli Stefania, Pedrocchi Nicola, Lorenzo Molinari Tosatti, et al. Multi-robot Spot-welding Cells for Car-body Assembly: Design and Motion Planning[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 97-116.
|
13 |
Aleotti Jacopo, Saveriano Matteo, Monica Riccardo. Editorial: Learning, Perception, and Collaboration for Robots in Industrial Environments[J]. Frontiers in Robotics and AI, 2022, 9: 888971.
|
14 |
杨丽婷. 基于虚拟仿真的焊接机器人无碰撞路径及轨迹优化研究[D]. 南昌: 华东交通大学, 2021.
|
|
Yang Liting. Research on Collision-free Path and Trajectory Optimization of Welding Robot Based on Virtual Simulation[D]. Nanchang: East China Jiaotong University, 2021.
|
15 |
成正勇, 黎亮, 李小灿, 等. 基于TIA与TECNOMATIX的联合虚拟调试研究[J]. 汽车工艺与材料, 2020(2): 66-71.
|
|
Cheng Zhengyong, Li Liang, Li Xiaocan, et al. Joint Virtual Debugging Research Based on TIA and TECNOMATIX[J]. Automobile Technology & Material, 2020(2): 66-71.
|
16 |
伍佳, 黄西利, 陈快. 浅议机器人仿真的可达性和通过性[J]. 装备制造技术, 2022(5): 105-108, 118.
|
17 |
吕文壮. 汽车车身焊接机器人路径规划与虚拟仿真研究[D]. 上海: 上海应用技术大学, 2020.
|
|
Wenzhuang Lü. Research on Path Planning and Virtual Simulation of Atomobile Body Welding Robot[D]. Shanghai: Shanghai Institute of Technology, 2020.
|