系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 1965-1977.doi: 10.16182/j.issn1004731x.joss.25-0374

• 专栏:数字试验与测试技术发展与展望 • 上一篇    

有限资源下机群放飞保障流程仿真与优化

龚峰1,2, 姜涛2, 张钦1, 刘宇1   

  1. 1.电子科技大学,四川 成都 611731
    2.中国航空工业集团公司成都飞机设计研究所,四川 成都 610031
  • 收稿日期:2025-05-01 修回日期:2025-06-22 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 刘宇
  • 第一作者简介:龚峰(1980-),男,研究员,硕士,研究方向为飞机设计。
  • 基金资助:
    预研技术项目(KJXYY2024-026/M26);国家自然科学基金(72271044)

Simulation and Optimization of Support Processes for Aircraft Fleet Launch Under Limited Resources

Gong Feng1,2, Jiang Tao2, Zhang Qin1, Liu Yu1   

  1. 1.University of Electronic Science and Technology of China, Chengdu 611731, China
    2.AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610031, China
  • Received:2025-05-01 Revised:2025-06-22 Online:2025-08-20 Published:2025-08-26
  • Contact: Liu Yu

摘要:

针对有限资源下机群保障流程调度优化难题,构建覆盖多机、多活动、多资源约束的机群保障流程优化模型。采用活动节点图模型建立机群保障流程的时序逻辑、资源竞争等约束关系,构建“时序-活动-资源”多维优化模型。提出基于优先级排序编码的遗传算法,结合串行解码策略与动态罚函数处理模型中复杂约束条件,有效解决复杂时序与资源约束下机群保障优化求解难题。开发机群保障流程仿真模型,通过离散事件仿真验证优化结果的有效性与适应性。仿真结果表明:该方法可显著缩短机群保障时间,提高有限资源利用率。

关键词: 机群保障, 有限资源, 保障仿真, 调度优化, 遗传算法

Abstract:

To address the scheduling problem of aircraft fleet support processes under limited resources, a fleet support process optimization model that covered multiple aircraft, activities, and resource constraints was developed. An activity node graph model was used to establish the temporal logic, resource competition, and other constraints in the fleet support process, forming a "time–activity–resource" multidimensional optimization model. A genetic algorithm based on priority encoding was proposed, incorporating a serial decoding strategy and a dynamic penalty function to handle the complex constraints in the model, efficiently solving the optimization problem under complicated temporal and resource constraints. A fleet support process simulation model was developed, and a discrete event simulation was performed to verify the effectiveness and adaptability of the optimized solutions. Simulation results demonstrate that the proposed method significantly reduces the fleet support time and improves the utilization efficiency of limited resources.

Key words: fleet support, limited resource, support simulation, scheduling optimization, genetic algorithm

中图分类号: