系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2152-2162.doi: 10.16182/j.issn1004731x.joss.24-0301

• 论文 • 上一篇    

基于模糊奖惩机制证据理论的船舶火灾预测方法

杨春雨, 张闯, 张晓凡   

  1. 大连海事大学 航海学院,辽宁 大连 116026
  • 收稿日期:2024-03-28 修回日期:2024-06-12 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 张闯
  • 第一作者简介:杨春雨(1998-),男,硕士生,研究方向为船舶多源信息融合。
  • 基金资助:
    辽宁省应用基础研究计划(2022JH2/101300265)

Ship Fire Prediction Method Based on Evidence Theory with Fuzzy Reward

Yang Chunyu, Zhang Chuang, Zhang Xiaofan   

  1. Navigation College, Dalian Maritime University, Dalian 116026, China
  • Received:2024-03-28 Revised:2024-06-12 Online:2025-08-20 Published:2025-08-26
  • Contact: Zhang Chuang

摘要:

针对船舶火灾早期预报的漏报和误报等问题,提出了种基于模糊奖惩机制D-S(dempster-shafer)证据理论加权的多源信息融合方法。利用PyroSim建立船舶室内模型进行火灾仿真,采集一氧化碳、温度和烟雾浓度变化量数据,利用sigmf函数进行隶属度分配;在经典D-S理论的基础上将奖惩机制应用于加权证据融合,利用奖惩因子区分不同基本概率分配,并将统一信任分配与奖惩因子相结合,避免因证据间高度冲突导致失效,提高证据融合的收敛性。实验结果表明:该方法可在火灾预测的同一时间节点上将预测准确率从57.3%提升到95.41%,有效降低火灾预测的不准确性。

关键词: 仿真技术, D-S(dempster-shafer)证据理论, 船舶, 数据融合, 火灾预测

Abstract:

A multi-source information fusion approach based on the dempster-shafer (D-S) evidence theory with a fuzzy reward-penalty mechanism was proposed to address the issues of underreporting and false reporting in the early prediction of ship fires. PyroSim was utilized to construct a ship's laboratory model for fire simulation. Variations in carbon monoxide, temperature, and smoke concentration were recorded for data acquisition, followed by the application of a sigmf function for membership assignment. By leveraging the classical D-S theory, a reward-penalty mechanism was applied in weighted evidence fusion. Reward-penalty factors were utilized to differentiate various basic probability assignments, with unified belief assignmentsbeing incorporated to mitigate the risk of failure due to high conflicts among evidence, thereby enhancing the convergence of evidence fusion. The research findings demonstrate that the proposed method can increase the prediction accuracy from 57.3% to 95.41% at the same time point for fire prediction, effectively reducing the imprecision of fire prediction.

Key words: simulation technology, dempster-shafer(D-S) evidence theory, ship, data fusion, fire prediction

中图分类号: