Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (9): 2137-2148.doi: 10.16182/j.issn1004731x.joss.23-0543
Wang Yuelong, Wang Songyan, Chao Tao
Received:
2023-05-09
Revised:
2023-07-12
Online:
2024-09-15
Published:
2024-09-30
Contact:
Chao Tao
CLC Number:
Wang Yuelong, Wang Songyan, Chao Tao. Multi-step Information Aided Q-learning Path Planning Algorithm[J]. Journal of System Simulation, 2024, 36(9): 2137-2148.
1 | 林韩熙, 向丹, 欧阳剑, 等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用, 2021, 57(18): 38-48. |
Lin Hanxi, Xiang Dan, Ouyang Jian, et al. Review of Path Planning Algorithms for Mobile Robots[J]. Computer Engineering and Applications, 2021, 57(18): 38-48. | |
2 | Tan Bin, Peng Yinyin, Lin Jiugen. A Local Path Planning Method Based on Q-learning[C]//2021 International Conference on Signal Processing and Machine Learning (CONF-SPML). Piscataway, NJ, USA: IEEE, 2021: 80-84. |
3 | 徐晓苏, 袁杰. 基于改进强化学习的移动机器人路径规划方法[J]. 中国惯性技术学报, 2019, 27(3): 314-320. |
Xu Xiaosu, Yuan Jie. Path Planning for Mobile Robot Based on Improved Reinforcement Learning Algorithm[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 314-320. | |
4 | Ee Soong Low, Ong Pauline, Kah Chun Cheah. Solving the Optimal Path Planning of a Mobile Robot Using Improved Q-learning[J]. Robotics and Autonomous Systems, 2019, 115: 143-161. |
5 | 毛国君, 顾世民. 改进的Q-Learning算法及其在路径规划中的应用[J]. 太原理工大学学报, 2021, 52(1): 91-97. |
Mao Guojun, Gu Shimin. An Improved Q-learning Algorithm and Its Application in Path Planning[J]. Journal of Taiyuan University of Technology, 2021, 52(1): 91-97. | |
6 | 田晓航, 霍鑫, 周典乐, 等. 基于蚁群信息素辅助的Q学习路径规划算法[J]. 控制与决策, 2023, 38(12): 3345-3353. |
Tian Xiaohang, Huo Xin, Zhou Dianle, et al. Ant Colony Pheromone Aided Q-learning Path Planning Algorithm[J]. Control and Decision, 2023, 38(12): 3345-3353. | |
7 | Peng Jing, Williams R J. Incremental Multi-step Q-learning[J]. Machine Learning, 1996, 22(1): 283-290. |
8 | 唐恒亮, 唐滋芳, 董晨刚, 等. 基于启发式强化学习的AGV路径规划[J]. 北京工业大学学报, 2021, 47(8): 895-903. |
Tang Hengliang, Tang Zifang, Dong Chengang, et al. AGV Path Planning Based on Heuristic Reinforcement Learning[J]. Journal of Beijing University of Technology, 2021, 47(8): 895-903. | |
9 | 付虹, 王国志, 柯坚, 等. 基于启发式Q(λ)学习的铁路绝缘子定位研究[J]. 铁道标准设计, 2018, 62(4): 151-155. |
Fu Hong, Wang Guozhi, Ke Jian, et al. Research on Location of Railway Insulators Based on Heuristic Q(λ) Learning[J]. Railway Standard Design, 2018, 62(4): 151-155. | |
10 | 闫丰亭, 贾金原. DP-Q(λ):大规模Web3D场景中Multi-agent实时路径规划算法[J]. 系统仿真学报, 2019, 31(1): 16-26. |
Yan Fengting, Jia Jinyuan. DP-Q(λ): Real-time Path Planning for Multi-agent in Large-scale Web3D Scene[J]. Journal of System Simulation, 2019, 31(1): 16-26. | |
11 | 余涛, 王宇名, 甄卫国, 等. 基于多步回溯Q学习的自动发电控制指令动态优化分配算法[J]. 控制理论与应用, 2011, 28(1): 58-64. |
Yu Tao, Wang Yuming, Zhen Weiguo, et al. Multi-step Backtrack Q-learning Based Dynamic Optimal Algorithm for Auto Generation Control Order Dispatch[J]. Control Theory & Applications, 2011, 28(1): 58-64. | |
12 | 傅启明, 刘全, 王辉, 等. 一种基于线性函数逼近的离策略Q(λ)算法[J]. 计算机学报, 2014, 37(3): 677-686. |
Fu Qiming, Liu Quan, Wang Hui, et al. A Novel off Policy Q(λ) Algorithm Based on Linear Function Approximation[J]. Chinese Journal of Computers, 2014, 37(3): 677-686. | |
13 | 陈圣磊, 吴慧中, 肖亮, 等. 基于Metropolis准则的多步Q学习算法与性能仿真[J]. 系统仿真学报, 2007, 19(6): 1284-1287. |
Chen Shenglei, Wu Huizhong, Xiao Liang, et al. Metropolis Policy-based Multi-step Q learning Algorithm and Performance Simulation[J]. Journal of System Simulation, 2007, 19(6): 1284-1287. | |
14 | 刘仕超. 基于强化学习的移动机器人路径规划研究[D]. 青岛: 山东科技大学, 2017. |
Liu Shichao. The Research of Mobile Robot Patn Planning Based on Reinforcement Learning[D]. Qingdao: Shandong University of Science and Technology, 2017. | |
15 | 李涛, 赵宏生. 基于进化蚁群算法的移动机器人路径优化[J]. 控制与决策, 2023, 38(3): 612-620. |
Li Tao, Zhao Hongsheng. Path Optimization for Mobile Robot Based on Evolutionary Ant Colony Algorithm[J]. Control and Decision, 2023, 38(3): 612-620. | |
16 | 汪荣贵, 杨娟, 薛丽霞. 机器学习及其应用[M]. 北京: 机械工业出版社, 2019. |
17 | 余涛, 胡细兵, 刘靖. 基于多步回溯Q(λ)学习算法的多目标最优潮流计算[J]. 华南理工大学学报(自然科学版), 2010, 38(10): 139-145. |
Yu Tao, Hu Xibing, Liu Jing. Multi-objective Optimal Power Flow Calculation Based on Multi-step Q(λ) Learning Algorithm[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(10): 139-145. | |
18 | 马朋委. Q_learning强化学习算法的改进及应用研究[D]. 淮南: 安徽理工大学, 2016. |
Ma Pengwei. The Improvement and Application of Reinforcement Learning Algorithm Research[D]. Huainan: Anhui University of Science& Technology, 2016. | |
19 | Yang Xinshe. Flower Pollination Algorithm for Global Optimization[C]//The 11th International Conference on Unconventional Computation and Natural Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 240-249. |
20 | Sutton R S, Barto A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: The MIT Press, 2018. |
[1] | Liu Jialun, Yang Fan, Xie Lingli, Li Shijie, Wang Tengfei. Research on Virtual Simulation Testing Technology for Intelligent Navigation Collision Avoidance Decision-making and Planning [J]. Journal of System Simulation, 2024, 36(8): 1780-1789. |
[2] | Liu Bin, Lan Ying, Huang Wentao, Fan Qinqin. UAV Dynamic Path Planning Algorithm Combined with Dynamic Window Approach [J]. Journal of System Simulation, 2024, 36(8): 1843-1853. |
[3] | Lai Rongshen, Dou Lei, Wu Zhiyong, Sun Shuai. Fusion of Improved A* and Dynamic Window Approach for Mobile Robot Path Planning [J]. Journal of System Simulation, 2024, 36(8): 1884-1894. |
[4] | Huang Zhifeng, Liu Yuanhua. UAV Path Planning Based on Improved Harris Hawk Algorithm and B-spline Curve [J]. Journal of System Simulation, 2024, 36(7): 1509-1524. |
[5] | Wang Yaru, Yao Dexin, Liu Zengli, Peng Yi. Path Planning for Mobile Robot Based on Angle Search [J]. Journal of System Simulation, 2024, 36(7): 1643-1654. |
[6] | Lei Xu, Chen Jingyi, Chen Xiaoyang. Research on Path Planning of Warehouse Robot with Improved Harris Hawks Algorithm [J]. Journal of System Simulation, 2024, 36(5): 1081-1092. |
[7] | Xiao Peng, Xie Feng, Ni Haihong, Zhang Min, Tang Zhili, Li Ni. Research on Collaborative Optimization Method of Multi-UAV Task Allocation and Path Planning [J]. Journal of System Simulation, 2024, 36(5): 1141-1151. |
[8] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
[9] | Wang Xiaokang, Ji Jie, Liu Yang, He Qing. Path Planning of Unmanned Delivery Vehicle Based on Improved Q-learning Algorithm [J]. Journal of System Simulation, 2024, 36(5): 1211-1221. |
[10] | Jiang Zhaozhen, Wang Wenlong, Sun Wenqi. Path Planning Rapid Algorithm Based on Modified RRT* for Unmanned Surface Vessel [J]. Journal of System Simulation, 2024, 36(4): 888-900. |
[11] | Zhang Rui, Zhou Li, Liu Zhengyang. Dynamic Path Planning for Mobile Robot Based on RRT* and Dynamic Window Approach [J]. Journal of System Simulation, 2024, 36(4): 957-968. |
[12] | Li Gaoyang, Li Xiangfeng, Zhao Kang, Jin Yuchao, Yi Zhidong, Zuo Dunwen. Three-Dimensional Path Planning of UAV Based on All Particles Driving Wild Horse Optimizer Algorithm [J]. Journal of System Simulation, 2024, 36(3): 595-607. |
[13] | Yu Xiang, Jiang Chen, Duan Sirui, Deng Qianrui. Path Planning for Improvement of A* Algorithm and Artificial Potential Field Method [J]. Journal of System Simulation, 2024, 36(3): 782-794. |
[14] | Tang Yunchao, Qi Shaojun, Zhu Lixue, Zhuo Xianrong, Zhang Yunqi, Meng Fan. Obstacle Avoidance Motion in Mobile Robotics [J]. Journal of System Simulation, 2024, 36(1): 1-26. |
[15] | Chen Dejun, Fang Zihao, Zeng Yunxiu, Xu Kai. Deceptive Path Planning in Fog of War [J]. Journal of System Simulation, 2023, 35(9): 1895-1908. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||