Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (2): 254-267.doi: 10.16182/j.issn1004731x.joss.21-0894
• Papers • Previous Articles Next Articles
Fengwei Yang1(), Peng Chen1(
), Kai Xi1, Hualin Pu1, Xueyin Liu1,2
Received:
2021-09-01
Revised:
2021-11-12
Online:
2023-02-28
Published:
2023-02-16
Contact:
Peng Chen
E-mail:yangfengweioo7@qq.com;chenpeng@swjtu.edu.cn
CLC Number:
Fengwei Yang, Peng Chen, Kai Xi, Hualin Pu, Xueyin Liu. Online Classification Method for Motor Imagery EEG with Spatial Information[J]. Journal of System Simulation, 2023, 35(2): 254-267.
Table 1
Detailed parameters of CNN with spatial information
层类型 | 输出通道数 | 输出特征图尺寸 | 核大小 | 步幅 | 剪枝率 | 填充大小 | 参数数量 |
---|---|---|---|---|---|---|---|
总计 | 24 082 | ||||||
输入层 | 1 | 32×512 | — | — | — | — | 0 |
卷积层1 | 16 | 32×256 | 1×23 | 1×2 | — | 0×11 | 368 |
批归一化层1 | 16 | 32×256 | — | — | — | — | 32 |
ELU激活层1 | 16 | 32×256 | — | — | — | — | 0 |
卷积层2 | 32 | 16×256 | 2×11 | 2×1 | — | 0×5 | 11 264 |
批归一化层2 | 32 | 16×256 | — | — | — | — | 64 |
ELU激活层2 | 32 | 16×256 | — | — | — | — | 0 |
平均池化层1 | 32 | 8×64 | 2×4 | 2×4 | — | 0 | 0 |
剪枝层1 | 32 | 8×64 | — | — | 0.25 | — | 0 |
卷积层3 | 32 | 4×64 | 2×5 | 2×1 | — | 0×2 | 10 240 |
批归一化层3 | 32 | 4×64 | — | — | — | — | 64 |
ELU激活层3 | 32 | 4×64 | — | — | — | — | 0 |
平均池化层2 | 32 | 2×16 | 2×4 | 2×4 | — | 0 | 0 |
剪枝层2 | 32 | 2×16 | — | — | 0.25 | — | 0 |
展平层 | — | 1024 | — | — | — | — | 0 |
全连接层 | — | 2 | — | — | — | — | 2 050 |
Softmax输出层 | — | 2 | — | — | — | — | 0 |
Table 2
The highest accuracy and kappa coefficient of 11 subjects on offline training testingset
被试 | 左右手运动想象 | 左右脚运动想象 | 坐站运动想象 | |||
---|---|---|---|---|---|---|
准确率/% | Kappa系数 | 准确率/% | Kappa系数 | 准确率/% | Kappa系数 | |
平均 | 94.60 | 0.893 9 | 94.57 | 0.892 9 | 94.58 | 0.893 1 |
P01 | 96.31 | 0.925 9 | 95.77 | 0.915 5 | 96.31 | 0.925 8 |
P02 | 98.12 | 0.962 4 | 96.77 | 0.933 9 | 96.18 | 0.943 6 |
P03 | 94.93 | 0.898 7 | 95.31 | 0.906 1 | 94.37 | 0.887 3 |
P04 | 93.90 | 0.876 4 | 95.22 | 0.904 0 | 95.69 | 0.913 8 |
P05 | 88.48 | 0.790 2 | 90.14 | 0.802 0 | 93.55 | 0.860 9 |
P06 | 94.93 | 0.897 9 | 96.24 | 0.924 7 | 94.74 | 0.891 9 |
P07 | 99.06 | 0.981 2 | 96.77 | 0.935 5 | 93.43 | 0.868 1 |
P08 | 95.64 | 0.889 3 | 96.38 | 0.947 5 | 97.59 | 0.941 7 |
P09 | 94.85 | 0.896 9 | 96.31 | 0.926 2 | 93.48 | 0.876 1 |
P10 | 90.43 | 0.835 0 | 89.00 | 0.780 4 | 90.91 | 0.817 6 |
P11 | 93.96 | 0.878 5 | 92.34 | 0.846 4 | 94.13 | 0.897 3 |
1 | Wolpaw R, Birbaumer N, Heetderks W J, et al. Brain-computer Interface Technology: a Review of the First International Meeting[J]. IEEE Transactions on Rehabilitation Engineering(S1534-4320), 2000, 8(2): 164-173. |
2 | 何群, 邵丹丹, 王煜文, 等. 基于多特征卷积神经网路的运动想象脑电信号分析及意图识别[J]. 仪器仪表学报, 2020, 41(1): 138-146. |
He Qun, Shao Dandan, Wang Yuwen, et al. Analysis and Intention Recognition of Motor Imagery EEG Signals Based on Multi-feature Convolutional Neural Network [J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 138-146. | |
3 | 曹洋, 唐宏伟, 马艳妮, 等. 脑电采集系统的发展及其现代化应用[J]. 新技术新工艺, 2015(11): 83-89. |
Cao Yang, Tang Hongwei, Ma Yanni, et al. The Development and Modern Application of the EEG Signal Acquisition System[J]. New Technology & New Process, 2015(11): 83-89. | |
4 | 杨帮华, 李博. 基于脑机接口的康复训练系统[J]. 系统仿真学报, 2019, 31(2): 174-180. |
Yang Banghua, Li Bo. Rehabilitation Training System Based on Brain Computer Interface[J]. Journal of System Simulation, 2019, 31(2): 174-180. | |
5 | 陈超, 平尧, 郝斌, 等. 基于脑机接口技术的写字系统建模仿真与实现[J]. 系统仿真学报, 2018, 30(12): 4499-4505. |
Chen Chao, Ping Yao, Hao Bin, et al. Modeling, Simulation and Realization of Writing System Based on BCI Technology[J]. Journal of System Simulation, 2018, 30(12): 4499-4505. | |
6 | Sandhya B, Shendkar C, Mahadevappa M. Single Channel Event Related (de) Synchronization (erd/ers) Analysis of Motor Execution in Stroke Affected Foot Drop Subjects [C]//2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems(MedCom). IEEE, 2014: 325-328. |
7 | Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe, NV, 2012: 1097-1105. |
8 | Tabar Y R, Halici U. A Novel Deep Learning Approach for Classification of EEG Motor Imagery Signals[J]. Journal of Neural Engineering(S1741-2560), 2016, 14(1): 016003. |
9 | Bashivan P, Rish I, Yeasin M, et al. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks[C]//International Conference on Learning Representations. 2015. |
10 | Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a Compact Convolutional Neural Network for EEG-based Brain-computer Interfaces[J]. Journal of Neural Engineering(S1741-2560), 2018, 15(5): 056013. |
11 | Hou Y, Zhou L, Jia S, et al. A Novel Approach of Decoding EEG Four-class Motor Imagery Tasks via Scout ESI and CNN[J]. Journal of Neural Engineering (S1741-2560), 2020, 17(1): 016048. |
12 | 杨帮华. 自发脑电脑机接口技术及脑电信号识别方法研究[D]. 上海: 上海交通大学, 2007. |
Yang Banghua. Technology of Brain-computer Interface Based on Spontaneous EEG and Research on Recognition Methods of EEG Signal[D]. Shanghai: Shanghai JiaoTong University, 2007. | |
13 | Al-Saegh A, Dawwd S A, Abdul-Jabbar J M. Deep Learning for Motor Imagery EEG-based Classification: a Review[J]. Biomedical Signal Processing and Control (S1746-8094), 2021, 63: 102172. |
14 | 佟歌. 基于深度学习的运动想象脑电信号分类算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
Tong Ge. Research on Classification of Motor Imaginary EEG Signals Based on Deep Learning[D]. Harbin: Harbin Engineering University, 2018. | |
15 | 杜勇. 基于脑电控制的智能护理轮椅系统研究与设计[D]. 曲阜: 曲阜师范大学, 2019. |
Du Yong. Research and Design of Intelligent Nursing Wheelchair System Based on EEG Control[D]. Qufu: Qufu Normal University, 2019. | |
16 | Amin S U, Alsulaiman M, Muhammad G, et al. Deep Learning for EEG Motor Imagery Classification Based on Multi-layer CNNs Feature Fusion[J]. Future Generation Computer Systems(S0167-739X), 2019, 101: 542-554. |
17 | 深圳市诺比邻科技有限公司. 卷积神经网络的参数优化方法及系统: CN201610795257.X[P]. 2017-01-11. |
Shenzhen Nuobilin Technology Co., Ltd. Parameter Optimization Method and System of Convolutional Neural Network: CN201610795257.X[P]. 2017-01-11 | |
18 | 王薇. 基于深度学习的脑电分类识别方法[D]. 南京: 南京邮电大学, 2020. |
Wang Wei. Classification and recognition method of EEG Based on deep learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. | |
19 | Young B M, Nigogosyan Z, Nair V A, et al. Case Report: Post-stroke Interventional BCI Rehabilitation in an Individual with Preexisting Sensorineural Disability[J]. Frontiers in Neuroengineering(S1662-6443), 2014, 7: 18. |
[1] | Lifeng Zhang, Huiren Wang. Image Reconstruction of Electrical Capacitance Tomography Based on Convolutional Neural Network and Finite Element Simulation [J]. Journal of System Simulation, 2022, 34(4): 712-718. |
[2] | Bangqian Ao, Sha Yang, Jinqing Linghu, zhenhuan Ye. Design of Fatigue Driving Detection System Based on Cascaded Neural Network [J]. Journal of System Simulation, 2022, 34(2): 323-333. |
[3] | Yaru Wang, Kai Yang, Yongjie Zhai, Congbin Guo, Wenqing Zhao, Jie Su. Transmission Line Insulator Recognition Based on Artificial Images Data Expansion [J]. Journal of System Simulation, 2022, 34(11): 2337-2347. |
[4] | Jiale Xu, Haidong Zhang, Donghai Zhao, Wancheng Ni. Tactical Maneuver Strategy Learning from Land Wargame Replay Based on Convolutional Neural Network [J]. Journal of System Simulation, 2022, 34(10): 2181-2193. |
[5] | Yecai Guo, Qingwei Wang. Modulation Recognition Algorithm Based on Truncated Migration and Parallel ResNet [J]. Journal of System Simulation, 2022, 34(09): 2009-2018. |
[6] | Zhao Ying, Lu Yao, Zhang Jian, Liang Qidi, Long Wei. Multi-view Human Action Recognition Based on Deep Neural Network [J]. Journal of System Simulation, 2021, 33(5): 1019-1030. |
[7] | Tong Weiguo, Pang Xuechun, Zhu Genghong. Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network [J]. Journal of System Simulation, 2021, 33(4): 883-891. |
[8] | Huang Xin, Fang Yu, Gu Mengdan. Classification of Chest X-ray Disease Based on Convolutional Neural Network [J]. Journal of System Simulation, 2020, 32(6): 1188-1194. |
[9] | Fan Minglu, Wang Yan, Ji Zhicheng. Fault Diagnosis for Bearings of Unbalanced Data Based on Feature Generation [J]. Journal of System Simulation, 2020, 32(12): 2438-2448. |
[10] | Wang Hongjun, Li Zouzou, Zou Xiangjun. Wood Surface Defect Detection Based on Adaboost and CNN [J]. Journal of System Simulation, 2019, 31(8): 1636-1645. |
[11] | Yang Banghua, Li Bo. Rehabilitation Training System Based on Brain Computer Interface [J]. Journal of System Simulation, 2019, 31(2): 174-180. |
[12] | Lu Yuqiu, Sun Jinyu, Ma Shiwei. Moving Object Detection Based on Deep Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2275-2280. |
[13] | Xia Min, Shen Maoyang, Wang Jianfeng, Wang Yangguang. Cloud Fraction of Satellite Imagery Based On Convolutional Neural Networks [J]. Journal of System Simulation, 2018, 30(5): 1623-1630. |
[14] | Chen Chao, Ping Yao, Hao Bin, Xu Rui. Modeling, Simulation and Realization of Writing System Based on BCI Technology [J]. Journal of System Simulation, 2018, 30(12): 4499-4505. |
[15] | Feng Jiankui, Jin Jing, Wang Bei, Niu Yugang, Wang Xingyu. Multi-tasks Channel Selection Algorithmic Modeling Based on SVM-RFE [J]. Journal of System Simulation, 2018, 30(12): 4506-4512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||