Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (5): 1054-1063.doi: 10.16182/j.issn1004731x.joss.20-0983
• Modeling Theory and Methodology • Previous Articles Next Articles
Received:
2020-12-08
Revised:
2021-01-26
Online:
2022-05-18
Published:
2022-05-25
Contact:
Bin Zhang
E-mail:823869941@qq.com;1374289220@qq.com
CLC Number:
Qiwen Zhang, Bin Zhang. Teaching-Learning-Based Optimization Algorithm for Permutation Flowshop Scheduling[J]. Journal of System Simulation, 2022, 34(5): 1054-1063.
Table 2
Comparison of test results
Rec?问题集 | m×n | C* | DBA | VP-QEA | DWPA | HSOS | MCTLBO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | |||
01 | 20×5 | 1 247 | 0 | 0.080 | 0 | 1.05 | 0 | 0 | 0 | 0 | 0 | 0.120 |
03 | 20×5 | 1 109 | 0 | 0.081 | 0 | 0.27 | 0 | 0 | 0 | 0 | 0 | 0.068 |
05 | 20×5 | 1 242 | 0.242 | 0.242 | 0.24 | 0.99 | 0 | 0.213 | 0 | 0 | 0 | 0.217 |
07 | 20×10 | 1 566 | 0 | 0.575 | 1.14 | 1.56 | 0 | 0 | 0 | 0 | 0 | 0.632 |
09 | 20×10 | 1 537 | 0 | 0.638 | 0.97 | 2.08 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 20×10 | 1 431 | 0 | 1.167 | 0.62 | 2.06 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 20×15 | 1 930 | 0.415 | 1.461 | 1.34 | 2.48 | 0 | 0.129 | 0 | 0.273 | 0 | 0.192 |
15 | 20×15 | 1 950 | 0.154 | 1.226 | 0.82 | 1.84 | 0 | 0.213 | 0 | 0.523 | 0 | 0.356 |
17 | 20×15 | 1 902 | 0.368 | 1.277 | 2.78 | 3.94 | 0 | 0.043 | 0 | 1.388 | 0 | 0.037 |
19 | 30×10 | 2 093 | 0.573 | 0.929 | 2.34 | 4.25 | 0.287 | 0.978 | 0.620 | 1.274 | 0.287 | 0.430 |
21 | 30×10 | 2 017 | 1.438 | 1.671 | 1.63 | 3.52 | 0.543 | 1.157 | 1.437 | 1.537 | 1.438 | 1.557 |
23 | 30×10 | 2 011 | 0.796 | 1.173 | 2.43 | 3.96 | 0.403 | 0.616 | 0.348 | 1.280 | 0.149 | 0.686 |
25 | 30×15 | 2 513 | 1.632 | 2.291 | 2.62 | 4.61 | 0.379 | 1.027 | 0.835 | 2.067 | 0.199 | 0.809 |
27 | 30×15 | 2 373 | 1.011 | 1.419 | 2.14 | 4.04 | 0.433 | 0.952 | 0.969 | 1.432 | 0.253 | 1.016 |
29 | 30×15 | 2 287 | 1.049 | 2.580 | 4.32 | 5.20 | 0.475 | 1.183 | 0.831 | 2.488 | 0 | 0.822 |
31 | 50×10 | 3 045 | 2.299 | 3.392 | 4.63 | 6.14 | 0.987 | 0.971 | 0.427 | 0.644 | 0.427 | 1.307 |
33 | 50×10 | 3 114 | 0.610 | 0.728 | 1.28 | 2.89 | 0.019 | 0.156 | 0 | 0.565 | 0.128 | 0.777 |
35 | 50×10 | 3 277 | 0 | 0.037 | 0.09 | 1.61 | 0 | 0.112 | 0 | 0 | 0 | 0.026 |
37 | 75×20 | 4 951 | 3.373 | 4.872 | 6.84 | 7.81 | 1.158 | 2.805 | 2.565 | 3.001 | 1.959 | 2.430 |
39 | 75×20 | 5 087 | 2.280 | 3.851 | 4.97 | 6.19 | 1.633 | 2.374 | 1.828 | 2.222 | 0.904 | 1.613 |
41 | 75×20 | 4 960 | 3.810 | 5.095 | 6.99 | 7.80 | 2.660 | 3.003 | 2.388 | 3.350 | 1.956 | 2.601 |
AVG | ? | ? | 0.955 | 1.656 | 2.295 | 3.538 | 0.427 | 0.759 | 0.583 | 1.050 | 0.367 | 0.747 |
[1] | Garey M R, Johnson D S, Sethi R. The Complexity of Flowshop and Jobshop Scheduling[J]. Mathematics of Operations Research (S0364-765X), 1976, 1(2): 117-129. |
[2] | Chung C S, Flynn J, Kirca O. A Branch and Bound Algorithm to Minimize the Total Flow Time for M-machine Permutation Flowshop Problems[J]. International Journal of Production Economics (S0925-5273), 2002, 79(3): 185-196. |
[3] | Ruiz R, Maroto C. A Comprehensive Review and Evaluation of Permutation Flowshop Heuristics[J]. Eur J Oper Res (S0377-2217), 2005, 165(2): 479-494. |
[4] | Goldberg D E. Genetic Algorithm in Search, Optimization, and Machine Learning[M]. Massachusetts, USA: Addison-Wesley Pub. Co, 1989. |
[5] | Liu H, Gao L, Pan Q. A Hybrid Particle Swarm Optimization with Estimation of Distribution Algorithm for Solving Permutation Flowshop Scheduling Problem[J]. Expert Systems with Applications (S0957-4174), 2011, 38(4): 4348-4360. |
[6] | 秦旋, 房子涵, 张赵鑫. 混合共生生物搜索算法求解置换流水车间调度问题[J]. 浙江大学学报(工学版), 2020, 54(4): 712-721. |
Qin Xuan, Fang Zihan, Zhang Zhaoxin. Hybrid Symbiotic Organisms Search Algorithm for Permutation Flow Shop Scheduling Problem[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 712-721. | |
[7] | Rao R V, Savsani V J, Vakharia D. Teaching-Learning- Based Optimization: a Novel Method for Constrained Mechanical Design Optimization Problems[J]. Computer-Aided Design (S0010-4485), 2011, 43(3): 303-315. |
[8] | Rao R V, Savsani V J, Vakharia D. Teaching-Learning- Based Optimization: an Optimization Method for Continuous Non-Linear Large Scale Problems[J]. Information Sciences (S0020-0255), 2012, 183(1): 1-15. |
[9] | Shao W, Pi D, Shao Z. An Extended Teaching-Learning Based Optimization Algorithm for Solving No-Wait Flow Shop Scheduling Problem[J]. Applied Soft Computing (S1568-4946), 2017, 61: 193-210. |
[10] | Rao R V, Patel V. Multi-Objective Optimization of Heat Exchangers Using a Modified Teaching-Learning-Based Optimization Algorithm[J]. Applied Mathematical Modelling (S0307-904X), 2013, 37(3): 1147-1162. |
[11] | Rao R V, Patel V. Multi-objective Optimization of two Stage Thermoelectric Cooler Using a Modified Teaching-Learning-Based Optimization Algorithm[J]. Engineering Applications of Artificial Intelligence (S0952-1976), 2013, 26(1): 430-445. |
[12] | Pickard J K, Carretero J A, Bhavsar V C. On the Convergence and Origin Bias of the Teaching-Learning- Based-Optimization Algorithm[J]. Applied Soft Computing (S1568-4946), 2016, 46: 115-127. |
[13] | Lei D, Gao L, Zheng Y. A Novel Teaching-Learning- Based Optimization Algorithm for Energy-Efficient Scheduling in Hybrid Flow Shop[J]. IEEE Transactions on Engineering Management (S0018-9391), 2017, 65(2): 1-11. |
[14] | Gao W F, Huang L L, Liu S Y, et al. Artificial Bee Colony Algorithm Based on Information Learning[J]. IEEE Transactions on Cybernetics (S2168-2267), 2015, 45(12): 2827-2839. |
[15] | Rao R, Patel V. An Elitist Teaching-learning-based Optimization Algorithm for Solving Complex Constrained Optimization Problems[J]. International Journal of Industrial Engineering Computations (S1923-2926), 2012, 3(4): 535-560. |
[16] | Ruiz R, Pan Q K, Naderi B. Iterated Greedy Methods for the Distributed Permutation Flowshop Scheduling Problem[J]. Omega-Int J Manage S (S0305-0483), 2019, 83: 213-222. |
[17] | Yang X S, Deb S. Cuckoo Search Via Lévy Flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Coimbatore, India: IEEE, 2009: 210-214. |
[18] | Walton S, Hassan O, Morgan K, et al. Modified Cuckoo Search: A New Gradient Free Optimisation Algorithm[J]. Chaos Solitons & Fractals (S0960-0779), 2011, 44(9): 710-718. |
[19] | Luo Q, Zhou Y, Xie J, et al. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling[J]. The Scientific World Journal (S1537-744X), 2014, 8: 630280. |
[20] | 张先超, 周泓. 变参数量子进化算法及其在求解置换流水车间调度问题中的应用[J]. 计算机集成制造系统, 2016, 22(3): 774-781. |
Zhang Xianchao, Zhou Hong. Variable Paramenters Quantum-Inspired Evolutionary Algorithm and Its Application in Permutation Flow-Shop Scheduling Problem[J]. Computer Integrated Manu-Facturing Systems, 2016, 22(3): 774-781. | |
[21] | 谢锐强, 张惠珍. 求解置换流水车间调度的离散狼群算法[J]. 控制工程, 2020, 27(2): 288-296. |
Xie Ruiqiang, Zhang Huizhen. Discrete Wolf Pack Algorithm for Permutation Flow Shop Scheduling Problem[J]. Control Engineering of China, 2020, 27(2): 288-296. |
[1] | Yanqiang Di, Ting Li, Shaochong Feng, Qiongyao Liu, Jianhong Lü, Zhijia Chen, Yang Zhang, Pengfei Cao. Parallel Simulation System of Equipment Precision Maintenance Based on Cloud-Edge-End Architecture [J]. Journal of System Simulation, 2022, 34(09): 1909-1919. |
[2] | Minghao Li, Wenhao Bi, An Zhang, Wenxuan Sun. Unmanned Air Vehicles Launching Aircraft Combat System and Key Technologies for Penetrating Counterair [J]. Journal of System Simulation, 2022, 34(9): 1920-1932. |
[3] | Yanfang Fu, Nan Zhang, Jianing Wei, Shaochun Qu, Ying Lu, Chang Liu. OPNET Based Simulation of Hybrid TDMA Protocol for Helicopters Datalink [J]. Journal of System Simulation, 2022, 34(9): 1933-1940. |
[4] | Junren Luo, Wanpeng Zhang, Weilin Yuan, Zhenzhen Hu, Shaofei Chen, Jing Chen. Research on Opponent Modeling Framework for Multi-agent Game Confrontation [J]. Journal of System Simulation, 2022, 34(9): 1941-1955. |
[5] | Li Zhang, Huizhen Zhang, Dong Liu, Yuxin Lu. Particle Swarm Algorithm for Solving Emergency Material Dispatch Considering Urgency [J]. Journal of System Simulation, 2022, 34(9): 1988-1998. |
[6] | Qiming Qi, Ruigang Fu, Ping Wang, Min Wang, Hongqi Fan. Design of Optical Compound Eye Simulation Software for Small Aircraft Applications [J]. Journal of System Simulation, 2022, 34(9): 1999-2008. |
[7] | Yiting Zhu, Yun Yan, Zhaocheng He. Mesoscopic Modeling and Simulation of Mixed Traffic Flow of Buses and Vehicles [J]. Journal of System Simulation, 2022, 34(9): 2019-2027. |
[8] | Chengbing Li, Yunfei Li, Peng Wu. Study on Invulnerability of Urban Agglomeration Passenger Traffic Network Considering Time Characteristics [J]. Journal of System Simulation, 2022, 34(9): 2037-2045. |
[9] | Junjie Sheng, Zhao Tang, Shaodi Dong, Shuyang Wu, Hao Liang. Architecture Design and Prototype Verification of Railway Vehicle Dynamics Cloud Platform [J]. Journal of System Simulation, 2022, 34(9): 2056-2064. |
[10] | Lifeng Zhang, Yu Miao. A High Resolution Reconstruction Method of Temperature Distribution in Acoustic Tomography [J]. Journal of System Simulation, 2022, 34(9): 2065-2073. |
[11] | Wen Zheng, Zhe Zhang, Jingyi Zhu. Simulation of the Market Exclusive Competition between Platforms [J]. Journal of System Simulation, 2022, 34(9): 2098-2106. |
[12] | Weidong Jin, Shuli Zhang, Peng Tang, Man Zhang. Image Dehazing Network Based on Densely Connected Residual Block and Channel Pixel Attention [J]. Journal of System Simulation, 2022, 34(8): 1663-1673. |
[13] | Huilin Zhang, Yujie Jin, Haima Yang. Sensorless Control of PMSM Based on an ANFIS Optimized Flux Sliding Mode Observer [J]. Journal of System Simulation, 2022, 34(8): 1682-1690. |
[14] | Qimiao Xie, Shuaishuai Guo. Research on Passenger Ship Evacuation Simulation Based on Social Force Model [J]. Journal of System Simulation, 2022, 34(8): 1710-1724. |
[15] | Wanjie Hu, Jianjun Dong, Rui Ren, Zhilong Chen. Layout Planning of Metro-based Underground Logistics System Network Considering Fuzzy Uncertainties [J]. Journal of System Simulation, 2022, 34(8): 1725-1740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||