系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2074-2088.doi: 10.16182/j.issn1004731x.joss.24-0229
• 论文 • 上一篇
张凯翔1, 毛剑琳2, 王妮娅2, 徐志昊2
收稿日期:
2024-03-12
修回日期:
2024-04-02
出版日期:
2025-08-20
发布日期:
2025-08-26
通讯作者:
毛剑琳
第一作者简介:
张凯翔(1993-),男,博士生,研究方向为移动机器人路径规划。
基金资助:
Zhang Kaixiang1, Mao Jianlin2, Wang Niya2, Xu Zhihao2
Received:
2024-03-12
Revised:
2024-04-02
Online:
2025-08-20
Published:
2025-08-26
Contact:
Mao Jianlin
摘要:
为在干扰环境下规划多机器人的无冲突路径,基于多机器人k鲁棒路径规划,设计了多机器人分层协作k鲁棒路径规划框架。在优先级优化层,针对求解顺序引发的起步困境问题,根据封闭因子确定多机器人路径求解顺序;在多机鲁棒协调层,以提高求解效率为目标,引入安全区间作为k鲁棒和无碰撞设计的基础,给出k鲁棒意义下的多机器人无碰撞路径约束;在核心求解层,采用动态的阻力因子,在规划时引导高优先级机器人规避低优先级机器人的起步区域。实验结果表明:所提算法能够以较小的路径损耗有效降低k鲁棒起步困境的影响,k鲁棒路径求解成功率较现有先进算法平均可提高39%以上。
中图分类号:
张凯翔,毛剑琳,王妮娅等 . 针对路径干扰的多机器人分层协作k鲁棒路径规划[J]. 系统仿真学报, 2025, 37(8): 2074-2088.
Zhang Kaixiang,Mao Jianlin,Wang Niya,et al . Multi-robot Hierarchical Collaborative k-robust Path Planning for Path Interference[J]. Journal of System Simulation, 2025, 37(8): 2074-2088.
表2
k=5时IkR-SIPP算法求解路径方案
机器人 | 路径 | 具体方案 |
---|---|---|
a1 | {(1,2), (2,2), (2,2), (2,2), (2,2), (2,2), (2,2), (2,2), (2,2), (2,2), (3,2), (4,2), (5,2), (6,2), (6,3), (6,4), (6,5), (6,6)} | |
a2 | {(8,3), (8,4), (8,5), (7,5)} | |
a3 | {(6,4), (7,4), (7,4), (7,4), (7,4), (7,4), (7,4), (8,4), (8,5), (8,6)} | |
a4 | {(6,1), (5,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,1), (4,2), (3,2), (2,2), (1,2), (1,1)} | |
a5 | {(6,3), (6,2), (5,2), (4,2), (3,2), (3,3), (3,4), (4,4), (4,5)} | |
a6 | {(2,5), (2,6), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,7), (2,6), (2,5), (2,4), (3,4), (3,3), (3,2), (4,2), (5,2), (5,1)} | |
a7 | {(1,4), (2,4), (2,4), (2,4), (2,4), (2,4), (2,5), (2,6), (3,6), (3,7)} | |
a8 | {(2,3), (2,3), (2,3), (2,3), (2,3), (2,3), (2,3), (2,3), (2,3), (2,3), (2,3), (2,4), (2,5), (2,6), (1,6)} |
[1] | Li Changmin, Zhang Lu, Zhang Liang. A Route and Speed Optimization Model to Find Conflict-free Routes for Automated Guided Vehicles in Large Warehouses Based on Quick Response Code Technology[J]. Advanced Engineering Informatics, 2022, 52: 101604. |
[2] | Okumura Keisuke, Machida Manao, Défago Xavier, et al. Priority Inheritance with Backtracking for Iterative Multi-agent Path Finding[J]. Artificial Intelligence, 2022, 310: 103752. |
[3] | Wang Hanlin, Rubenstein M. Walk, Stop, Count, and Swap: Decentralized Multi-agent Path Finding with Theoretical Guarantees[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1119-1126. |
[4] | Kudo Fumiya, Cai Kai. A TSP-based Online Algorithm for Multi-task Multi-agent Pickup and Delivery[J]. IEEE Robotics and Automation Letters, 2023, 8(9): 5910-5917. |
[5] | Hu Kewei, Chen Zheng, Kang Hanwen, et al. 3D Vision Technologies for a Self-developed Structural External Crack Damage Recognition Robot[J]. Automation in Construction, 2024, 159: 105262. |
[6] | Ratner D, Warmuth M. Finding a Shortest Solution for the N × N Extension of the 15-puzzle is Intractable[C]//Proceedings of the Fifth AAAI National Conference on Artificial Intelligence. Palo Alto: AAAI Press, 1986: 168-172. |
[7] | Sharon G. Novel Search Techniques for Path Finding in Complex Environment[D]. Be'er Sheva: Ben-Gurion University of the Negev, 2015. |
[8] | Ma Hang. Target Assignment and Path Planning for Navigation Tasks with Teams of Agents[D]. Los Angeles : University of Southern California, 2020. |
[9] | Sharon Guni, Stern Roni, Felner Ariel, et al. Conflict-based Search for Optimal Multi-agent Pathfinding[J]. Artificial Intelligence, 2015, 219: 40-66. |
[10] | 张洪琳, 吴耀华, 胡金昌, 等. 一种基于改进冲突搜索的多机器人路径规划算法[J]. 控制与决策, 2023, 38(5): 1327-1335. |
Zhang Honglin, Wu Yaohua, Hu Jinchang, et al. A Multi-robot Path Finding Algorithm Based on Improved Conflict Search[J]. Control and Decision, 2023, 38(5): 1327-1335. | |
[11] | Boyarski Eli, Felner Ariel, Stern Roni, et al. ICBS: The Improved Conflict-based Search Algorithm for Multi-agent Pathfinding[C]//Proceedings of the International Symposium on Combinatorial Search: Palo Alto: AAAI Press, 2015: 223-225. |
[12] | Barer Max, Sharon Guni, Stern Roni, et al. Suboptimal Variants of the Conflict-based Search Algorithm for the Multi-agent Pathfinding Problem[C]//Proceedings of the Twenty-first European Conference on Artificial Intelligence. NLD: IOS Press, 2014: 961-962. |
[13] | Li Jiaoyang, Harabor Daniel, Stuckey Peter J, et al. Pairwise Symmetry Reasoning for Multi-agent Path Finding Search[J]. Artificial Intelligence, 2021, 301: 103574. |
[14] | Erdmann M, Lozano-Pérez Tomás. On Multiple Moving Objects[J]. Algorithmica, 1987, 2(1): 477-521. |
[15] | Silver David. Cooperative Pathfinding[C]//Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Palo Alto: AAAI Press, 2021: 117-122. |
[16] | Phillips M, Likhachev M. SIPP: Safe Interval Path Planning for Dynamic Environments[C]//Proc.of the 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2011: 5628-5635. |
[17] | Yakovlev Konstantin, Andreychuk Anton, Stern Roni. Revisiting Bounded-suboptimal Safe Interval Path Planning[C]//Proceedings of the International Conference on Automated Planning and Scheduling. Palo Alto: AAAI Press, 2020: 300-304. |
[18] | Chen Zhe, Alonso-Mora Javier, Bai Xiaoshan, et al. Integrated Task Assignment and Path Planning for Capacitated Multi-agent Pickup and Delivery[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5816-5823. |
[19] | Ma Hang. Graph-based Multi-robot Path Finding and Planning[J]. Current Robotics Reports, 2022, 3(3): 77-84. |
[20] | Tai Ruochen, Wang Jingchuan, Chen Weidong. A Prioritized Planning Algorithm of Trajectory Coordination Based on Time Windows for Multiple AGVs with Delay Disturbance[J]. Assembly Automation, 2019, 39(5): 753-768. |
[21] | Atzmon Dor, Diei Amit, Rave Daniel. Multi-train Path Finding[C]//Proceedings of the International Symposium on Combinatorial Search. Palo Alto: AAAI Press, 2019: 125-129. |
[22] | 张丹露, 孙小勇, 傅顺, 等. 智能仓库中的多机器人协同路径规划方法[J]. 计算机集成制造系统, 2018, 24(2): 410-418. |
Zhang Danlu, Sun Xiaoyong, Fu Shun, et al. Cooperative Path Planning in Multi-robots for Intelligent Warehouse[J]. Computer Integrated Manufacturing Systems, 2018, 24(2): 410-418. | |
[23] | Nekvinda Michal, Barták Roman. Contingent Planning for Robust Multi-agent Path Finding[C]//2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). Piscataway: IEEE, 2021: 487-492. |
[24] | Semiz Fatih, Polat Faruk. Incremental Multi-agent Path Finding[J]. Future Generation Computer Systems, 2021, 116: 220-233. |
[25] | Koenig S, Likhachev M. D*Lite[C]//Eighteenth National Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2002: 476-483. |
[26] | 曹其新, 黄先群, 朱笑笑, 等. 基于保留区域的分布式多机器人路径规划[J]. 华中科技大学学报(自然科学版), 2018, 46(12): 71-76. |
Cao Qixin, Huang Xianqun, Zhu Xiaoxiao, et al. Distributed Multi-robot Path Planning Based on Reserved Area[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(12): 71-76. | |
[27] | 唐昀超, 祁少军, 朱立学, 等. 移动机器人避障运动研究[英][J]. 系统仿真学报, 2024, 36(1): 1-26. |
Tang Yunchao, Qi Shaojun, Zhu Lixue, et al. Obstacle Avoidance Motion in Mobile Robotics[Eng.][J]. Journal of System Simulation, 2024, 36(1): 1-26. | |
[28] | Atzmon Dor, Stern Roni, Felner Ariel, et al. Robust Multi-agent Path Finding[C]//Proceedings of the International Symposium on Combinatorial Search. Palo Alto: AAAI Press, 2018: 1-9. |
[29] | Goldenberg Meir, Felner Ariel, Stern R, et al. Enhanced Partial Expansion A*[J]. Journal of Artificial Intelligence Research, 2014, 50(1): 141-187. |
[30] | Chen Zhe, Harabor Daniel D, Li Jiaoyang, et al. Symmetry Breaking for k-robust Multi-agent Path Finding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 12267-12274. |
[31] | Atzmon Dor, Stern Roni, Felner Ariel, et al. Robust Multi-agent Path Finding and Executing[J]. Journal of Artificial Intelligence Research, 2020, 67: 549-579. |
[32] | 李昊楠, 毛剑琳, 张凯翔, 等. 一种基于安全区间的多机器人路径k鲁棒规划算法[J]. 仪器仪表学报, 2023, 44(10): 274-282. |
Li Haonan, Mao Jianlin, Zhang Kaixiang, et al. Multi-robot Path k Robust Planning Algorithm Based on Safe Interval[J]. Chinese Journal of Scientific Instrument, 2023, 44(10): 274-282. | |
[33] | 张凯翔, 毛剑琳, 向凤红, 等. 基于讨价还价博弈机制的B-IHCA*多机器人路径规划算法[J]. 自动化学报, 2023, 49(7): 1483-1497. |
Zhang Kaixiang, Mao Jianlin, Xiang Fenghong, et al. B-IHCA*, a Bargaining Game Based Multi-agent Path Finding Algorithm[J]. Acta Automatica Sinica, 2023, 49(7): 1483-1497. | |
[34] | Li Jiaoyang, Ruml W, Koenig S. EECBS: A Bounded-suboptimal Search for Multi-agent Path Finding[C]//Proceedings of the AAAI Conference on Artificial Intelligence: AAAI Press, 2021: 12353-12362. |
[35] | Stern Roni, Sturtevant Nathan, Felner Ariel, et al. Multi-agent Pathfinding: Definitions, Variants, and Benchmarks[C]//Proceedings of the International Symposium on Combinatorial Search. Palo Alto: AAAI Press, 2019: 151-158. |
[36] | Standley T. Finding Optimal Solutions to Cooperative Pathfinding Problems[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2010: 173-178. |
[37] | Zain Alabedeen Ali, Yakovlev Konstantin. Safe Interval Path Planning with Kinodynamic Constraints[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 12330-12337. |
[1] | 万宇航, 朱子璐, 钟春富, 刘永奎, 林廷宇, 张霖. 基于改进PPO算法的机械臂动态路径规划[J]. 系统仿真学报, 2025, 37(6): 1462-1473. |
[2] | 叶晨, 邵鹏, 张少平, 李文婷, 周腾明. 面向移动机器人路径规划的增强型人工大猩猩算法[J]. 系统仿真学报, 2025, 37(6): 1474-1485. |
[3] | 张艳, 李炳华, 霍涛, 刘榕. 融合改进A*算法与DWA算法的机器人动态避障方法研究[J]. 系统仿真学报, 2025, 37(6): 1555-1564. |
[4] | 周晓晖, 李研强, 王勇, 赵德财, 杨逍瑶. 基于双启发式信息蚁群算法的机器人路径规划[J]. 系统仿真学报, 2025, 37(5): 1280-1289. |
[5] | 喻蝶, 鲍柏仲, 司言, 段暕, 詹小斌, 史铁林. 基于搜索步优化A*算法的移动机器人路径规划[J]. 系统仿真学报, 2025, 37(4): 1041-1050. |
[6] | 张森, 代强强. 改进型深度确定性策略梯度的无人机路径规划[J]. 系统仿真学报, 2025, 37(4): 875-881. |
[7] | 贺志刚, 李大焱, 王妮娅, 毛剑琳, 王宁. 一种含链式工作方式的多机器人协作路径规划算法[J]. 系统仿真学报, 2025, 37(4): 953-967. |
[8] | 杨超, 郑瑞群, 李圳, 张鸿薇, 唐燕群, 李东泽. 面向无人机辅助车联网的并行任务传输与处理优化策略[J]. 系统仿真学报, 2025, 37(3): 635-645. |
[9] | 林桂娟, 李子涵, 王宇. 基于全局关键点提取的改进A*算法全局路径规划研究[J]. 系统仿真学报, 2025, 37(3): 667-678. |
[10] | 白宇鑫, 陈振亚, 石瑞涛, 苏蔚涛, 马卓强, 杨尚进. 基于改进哈里斯鹰算法的机器人路径规划研究[J]. 系统仿真学报, 2025, 37(3): 742-752. |
[11] | 金煦, 莫愿斌. 多策略混合山地瞪羚优化器在机器人路径规划问题中的应用[J]. 系统仿真学报, 2025, 37(3): 803-821. |
[12] | 李炯逸, 李强, 张新闻, Htet Zin Myo, 蔡永斌. 移动机器人用改进的双向A*二次路径规划算法[J]. 系统仿真学报, 2025, 37(2): 498-507. |
[13] | 齐本胜, 李岩, 苗红霞, 陈家林, 李成林. 基于改进启发式RRT的AUV路径规划[J]. 系统仿真学报, 2025, 37(1): 245-256. |
[14] | 许建民, 宋雷, 邓冬冬, 陈尧箬, 杨炜. 基于多尺度A*与优化DWA算法融合的移动机器人路径规划[J]. 系统仿真学报, 2025, 37(1): 257-270. |
[15] | 王琪玮, 张琪, 杨硕, 彭勇. 动态任务环境下智能体健壮行为树控制架构设计[J]. 系统仿真学报, 2025, 37(1): 54-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||