系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2061-2073.doi: 10.16182/j.issn1004731x.joss.24-0271

• 论文 • 上一篇    

空气涡轮火箭发动机起动过程半物理仿真方法研究

杨学森1,2, 赵巍1,2,3, 张秉龙1,2, 任三群1,2, 项效镕1,2,3, 赵庆军1,2,3,4   

  1. 1.中国科学院 工程热物理研究所,北京 100190
    2.轻型涡轮动力全国重点实验室,北京 100190
    3.中国科学院大学 航空宇航学院,北京 100049
    4.分布式冷热电联供系统北京市重点实验室,北京 100190
  • 收稿日期:2024-03-21 修回日期:2024-05-02 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 赵庆军
  • 第一作者简介:杨学森(1992-),男,高工,博士,研究方向为航空发动机仿真技术。
  • 基金资助:
    国家科技重大专项(J2019-III-0010-0054);国家自然科学基金重点项目(52336002)

Study on Semi-physical Simulation Method of Air Turbo Rocket Engine in Startup Process

Yang Xuesen1,2, Zhao Wei1,2,3, Zhang Binglong1,2, Ren Sanqun1,2, Xiang Xiaorong1,2,3, Zhao Qingjun1,2,3,4   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2.National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, China
    3.School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China
    4.Beijing Key Laboratory of Distributed Combined Cooling Heating and Power System, Beijing 100190, China
  • Received:2024-03-21 Revised:2024-05-02 Online:2025-08-20 Published:2025-08-26
  • Contact: Zhao Qingjun

摘要:

为满足空气涡轮火箭发动机控制规律验证需求,提出了基于串口通讯的半物理仿真方案,建立了集成快速原型系统、供应系统、测控系统、信号模拟器、故障注入系统和实时仿真机的半物理仿真平台,基于交叉编译技术开发了发动机数字模型,实现了发动机控制系统与供应系统的耦合半物理仿真。开展了空气涡轮火箭发动机起动过程半物理仿真,测试了涡轮出口温度超温情况下控制器的故障处理策略。结果表明:以频率量作为信号模拟器转速信号指令,模拟精度可达0.01%FS,刷新时间不超过1 ms;当主燃煤油流量达到最大流量的16.2%时,发动机进入转速自持状态,主燃煤油泵和液氧泵后压力为1.28 MPa;当主燃煤油流量达到最大时,发动机转速和推力同时达到设计状态。涡轮出口温度超温50 ℃时起动超温保护机制,电动泵设定转速输出为0,避免了发动机潜在运行风险。

关键词: 空气涡轮火箭发动机, 半物理仿真, 供应系统, 起动过程, 控制规律

Abstract:

To satisfy the requirements for validating the control law of air turbo rocket (ATR) engines, a semi-physical simulation approach was proposed based on serial communication. This platform integrated a rapid prototype system, a supply system, a measurement and control system, a signal simulator, a fault injection system, and a real-time computer. A digital model of the engine was developed based on cross-compilation technology, enabling the coupling and semi-physical simulation of the engine control system and the supply system. A semi-physical simulation of the ATR engine in the startup process was carried out, and the fault handling strategy of the controller under the situation of turbine outlet temperature exceeding the limit was tested. The results demonstrate that using frequency measurements as rotational speed signal instructions of the signal simulator achieves a simulation accuracy of up to 0.01%FS, with a refresh time of less than 1 ms. When the flow rate of the gas generator kerosene pump reaches 16.2% of the maximum value, the engine enters a self-sustaining speed state, and the back pressure of the gas generator kerosene pump and the liquid oxygen pump is 1.28 MPa. Once the flow rate of the gas generator kerosene pump reaches its maximum, the engine speed and thrust simultaneously reach the designed status. When the turbine outlet temperature exceeds the limit of 50 °C, the over-temperature protection mechanism is initiated. The speed of the electric pumps is set to zero to avoid potential operating risks for the engine.

Key words: air turbo rocket (ATR) engine, semi-physical simulation, supply system, startup process, control law

中图分类号: