系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2956-2965.doi: 10.16182/j.issn1004731x.joss.24-0651

• 论文 • 上一篇    

基于改进蚁群算法与A*算法相融合的机器人路径规划优化

杨兰英1, 李超1, 邹海锋2, 万江涛1, 张仁强1, 刘惠1, 卢宏1   

  1. 1.成都理工大学 机电工程学院,四川 成都 610000
    2.成都理工大学 核技术与自动化工程学院,四川 成都 610000
  • 收稿日期:2024-06-19 修回日期:2024-09-02 出版日期:2025-11-18 发布日期:2025-11-27
  • 第一作者简介:杨兰英(1976-),女,副教授,博士,研究方向为智能机器人。

Robot Path Planning Optimization Based on Fusion of Improved Ant Colony Algorithm and A* Algorithm

Yang Lanying1, Li Chao1, Zou Haifeng2, Wan Jiangtao1, Zhang Renqiang1, Liu Hui1, Lu Hong1   

  1. 1.School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610000, China
    2.The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610000, China
  • Received:2024-06-19 Revised:2024-09-02 Online:2025-11-18 Published:2025-11-27

摘要:

针对传统蚁群算法搜索效率慢、无法实时避障的问题,提出一种自适应寻路蚁群算法。引入引导方向机制,以缩短节点选择的时间;将A*算法的寻路机制引入到启发式函数中,以减少最优路径的长度和转弯次数。在全局路径规划中将传统A*算法规划出来的路线作为蚁群算法的初次迭代数据,以此来解决蚁群算法初次收敛较慢的问题;将传统A*算法的广度优先搜索机制引入到蚁群算法中,以此来解决蚁群算法迭代次数多的问题。为了验证本算法的优越性,采用了两种具有代表性的环境模型,并与两种传统蚁群算法以及遗传算法进行综合实验对比。对比实验显示,与AS、ACS和EAS算法相比,自适应寻路蚁群算法在路径规划中展现出收敛速度快,生成路径优的明显优势。

关键词: 移动机器人, 路径规划, 蚁群算法, A*算法, 引导方向机制

Abstract:

To improve slow search efficiency and achieve real-time obstacle avoidance in traditional ant colony algorithms, an adaptive ant colony algorithm was proposed. A guidance direction mechanism was introduced to shorten the time of node selection. The A* algorithm's path-finding mechanism was introduced into the heuristic function to reduce the length and number of circles of the optimal path solution. The route planned by the traditional A* algorithm was used as the initial iteration data of the ant colony algorithm in global path planning, so as to solve the problem of slow initial convergence of the ant colony algorithm. The breadth first search mechanism of the traditional A* algorithm was introduced into the ant colony algorithm to address the issue of multiple iterations in the algorithm. In order to verify the superiority of this algorithm, two representative environmental models were adopted and compared with two traditional ant colony algorithms and genetic algorithms through comprehensive experiments. Comparative experiments demonstrate that the adaptive path-finding ant colony algorithm exhibits significant advantages over AS, ACS, and EAS algorithms in path planning, featuring faster convergence and superior path generation.

Key words: mobile robot, path planning, ant colony algorithm, A* algorithm, guidance direction mechanism

中图分类号: