系统仿真学报 ›› 2025, Vol. 37 ›› Issue (10): 2630-2642.doi: 10.16182/j.issn1004731x.joss.24-0515

• 论文 • 上一篇    

HCA*框架下的低能耗多机器人路径规划算法

王宁, 毛剑琳, 李大焱, 房程远, 钱诚泽   

  1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500
  • 收稿日期:2024-05-15 修回日期:2024-07-01 出版日期:2025-10-20 发布日期:2025-10-21
  • 通讯作者: 毛剑琳
  • 第一作者简介:王宁(2000-),男,硕士生,研究方向为移动机器人路径规划。
  • 基金资助:
    国家自然科学基金(62263017)

Low-energy Multi-robot Path Planning Algorithm under HCA* Framework

Wang Ning, Mao Jianlin, Li Dayan, Fang Chengyuan, Qian Chengze   

  1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2024-05-15 Revised:2024-07-01 Online:2025-10-20 Published:2025-10-21
  • Contact: Mao Jianlin

摘要:

针对多机器人路径规划中的能耗优化问题,提出一种基于能量引导协作A*算法(energy-guided hierarchical cooperative A*,E-HCA*)的多机器人路径规划算法。针对多机器人系统在关隘口和狭长通道相互避让导致机器人振荡移动的问题,引入以路径长度为第二特征的节点拓展方法,提出一种协作A*框架下的贪婪抑制策略;建立差速机器人能耗模型,融合能耗指标在底层A*算法中构建能量引导估价函数,引导A*算法规划低能耗路径。实验结果表明:所提算法能够有效解决振荡路径问题,较现有算法路径总长度更短,路径总能耗更低,路径质量得到改善。

关键词: 多机器人, 路径规划, 能耗优化, 引导A*规划

Abstract:

To address the energy optimization problem in multi-robot path planning, this paper proposed a multi-robot path planning algorithm based on the energy-guided hierarchical cooperative A* (E-HCA*) algorithm. To address the issue of robot oscillations caused by mutual avoidance at bottlenecks and narrow passages in multi-robot systems, a node expansion method with path length as a secondary feature was introduced, and a greedy suppression strategy under the cooperative A* framework was proposed. A differential-drive robot energy consumption model was established, and an energy-guided heuristic function was constructed by integrating energy metrics into the underlying A* algorithm to guide low-energy path planning. The results show that the proposed algorithm effectively solves the oscillating path problem, achieving a shorter sum of length and lower sum of energy compared to existing algorithms, thereby improving path quality.

Key words: multi-robot, path planning, energy optimization, guided A* planning

中图分类号: