1 |
Gewaltig M O, Diesmann M. Nest (Neural Simulation Tool) [J]. Scholarpedia, 2007, 2(4): 1430.
|
2 |
Ippen Tammo, Eppler Jochen M, Hans E Plesser, et al. Constructing Neuronal Network Models in Massively Parallel Environments[J]. Frontiers in Neuroinformatics, 2017, 11: 30.
|
3 |
Jordan Jakob, Ippen Tammo, Helias Moritz, et al. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers[J]. Frontiers in Neuroinformatics, 2018, 12: 2.
|
4 |
Bekolay T, Bergstra J, Hunsberger E, et al. Nengo: A Python Tool for Building Large-scale Functional Brain Models[J]. Frontiers in Neuroinformatics, 2014, 7: 48.
|
5 |
Stewart T C. A Technical Overview of the Neural Engineering Framework[EB/OL]. (2012-10-29) [2023-09-15]. .
|
6 |
Stewart T, Choo F X, Eliasmith C. Spaun: A Perception-cognition-action Model Using Spiking Neurons[C]//Proceedings of the Annual Meeting of the Cognitive Science Society. [S.l.: s.n.], 2012: 1018-1023.
|
7 |
Dan Goodman, Brette Romain. Brian: A Simulator for Spiking Neural Networks in Python[J]. Frontiers in Neuroinformatics, 2008, 2: 5.
|
8 |
Stimberg Marcel, Goodman D F M, Nowotny T. Brian2GeNN: A System for Accelerating a Large Variety of Spiking Neural Networks with Graphics Hardware[J/OL]. bioRxiv. (2018-10-20) [2023-09-15]. .
|
9 |
Yavuz E, Turner J, Nowotny T. GeNN: A Code Generation Framework for Accelerated Brain Simulations[J]. Scientific Reports, 2016, 6(1): 18854.
|
10 |
Yamaura Hiroshi, Igarashi Jun, Yamazaki Tadashi. Simulation of a Human-scale Cerebellar Network Model on the K Computer[J]. Frontiers in Neuroinformatics, 2020, 14: 16.
|
11 |
Fang Wei, Chen Yanqi, Ding Jianhao, et al. SpikingJelly: An Open-source Machine Learning Infrastructure Platform for Spike-based Intelligence[J]. Science Advances, 2023, 9(40): eadi1480.
|
12 |
Hong Chaofei, Yuan Mengwen, Zhang Mengxiao, et al. SPAIC: A Spike-based Artificial Intelligence Computing Framework[J]. IEEE Computational Intelligence Magazine, 2024, 19(1): 51-65.
|
13 |
Syed Sahil Abbas Zaidi, Ansari M S, Aslam Asra, et al. A Survey of Modern Deep Learning Based Object Detection Models[J]. Digital Signal Processing, 2022, 126: 103514.
|
14 |
Minaee S, Boykov Y, Porikli F, et al. Image Segmentation Using Deep Learning: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542.
|
15 |
Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[EB/OL]. (2015-03-09) [2023-09-15]. .
|
16 |
Rhu M, Gimelshein N, Clemons J, et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-efficient Neural Network Design[C]//2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Piscataway: IEEE, 2016: 1-13.
|
17 |
Shriram S B, Garg Anshuj, Kulkarni Purushottam. Dynamic Memory Management for GPU-based Training of Deep Neural Networks[C]//2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). Piscataway: IEEE, 2019: 200-209.
|
18 |
Wang Linnan, Ye Jinmian, Zhao Yiyang, et al. Superneurons: Dynamic GPU Memory Management for Training Deep Neural Networks[C]//Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York: Association for Computing Machinery, 2018: 41-53.
|
19 |
Gusak Julia, Cherniuk Daria, Shilova Alena, et al. Survey on Efficient Training of Large Neural Networks[C]//Proceedings of the Thirty-first International Joint Conference on Artificial Intelligence Survey Track. California: International Joint Conferences on Artificial Intelligence Organization, 2022: 5494-5501.
|
20 |
Alzubaidi Laith, Zhang Jinglan, Humaidi Amjad J, et al. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions[J]. Journal of Big Data, 2021, 8(1): 53.
|
21 |
Huang C C, Jin Gu, Li Jinyang. SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping[C]//Proceedings of the Twenty-fifth International Conference on Architectural Support for Programming Languages and Operating Systems. New York: Association for Computing Machinery, 2020: 1341-1355.
|
22 |
Ren Jie, Rajbhandari S, Aminabadi R Y, et al. ZeRO-offload: Democratizing Billion-scale Model Training[C]//USENIX Annual Technical Conference. Berkeley: USENIX, 2021: 551-564.
|