系统仿真学报 ›› 2024, Vol. 36 ›› Issue (4): 888-900.doi: 10.16182/j.issn1004731x.joss.22-1381
姜兆祯1,2,3(), 王文龙1,2,3(
), 孙文祺1,2
收稿日期:
2022-11-18
修回日期:
2023-01-13
出版日期:
2024-04-15
发布日期:
2024-04-18
通讯作者:
王文龙
E-mail:1596787157@qq.com;wilon7521@qq.com
第一作者简介:
姜兆祯(1996-),男,满族,博士生,研究方向为移动机器人自主避障以及路径规划。E-mail:1596787157@qq.com
基金资助:
Jiang Zhaozhen1,2,3(), Wang Wenlong1,2,3(
), Sun Wenqi1,2
Received:
2022-11-18
Revised:
2023-01-13
Online:
2024-04-15
Published:
2024-04-18
Contact:
Wang Wenlong
E-mail:1596787157@qq.com;wilon7521@qq.com
摘要:
针对快速扩展随机树(RRT)算法在无人艇路径规划工作中目的性较弱的问题,提出一种改进的无人艇路径规划快速求解算法。对人工势场法进行改进,额外添加4个方向的受力分析,综合计算无人艇所受合力;重新定义转向角度的计算 方法 ,避免其进入局部最优陷阱,使其可以顺利抵达目标点,得到一条初始路径;利用该初始路径来设定快速扩展随机树算法的随机点采样区域,通过降低随机采样点生成在无价值区域的概率,以提高算法的目的性和时效性,得到二次规划路径;对二次规划路径进行冗余点去除操作,减少路径节点的同时可以进一步降低路径代价,得到最终的规划路径。实验结果表明:改进算法在取得相近代价的路径时,运行时间最多降低了84.14%,采样点数量最多减少了70.09%,算法质量更好,运行效率更高。
中图分类号:
姜兆祯,王文龙,孙文祺 . 基于改进RRT*算法的无人艇路径规划快速求解算法[J]. 系统仿真学报, 2024, 36(4): 888-900.
Jiang Zhaozhen,Wang Wenlong,Sun Wenqi . Path Planning Rapid Algorithm Based on Modified RRT* for Unmanned Surface Vessel[J]. Journal of System Simulation, 2024, 36(4): 888-900.
表2
仿真地图3种算法实验数据
算法 | 迭代 次数 | 首次发现路径迭代次数 | 采样点数 | 时间/s | 路径代价 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最大 | 最小 | 平均 | 最大 | 最小 | 平均 | 最大 | 最小 | 平均 | 最大 | 最小 | 平均 | ||
改进APF | / | / | / | / | / | / | / | 1.27 | 1.04 | 1.17 | 1 322.43 | 1 322.43 | 1 322.43 |
RRT* | 1 000 | 634 | 349 | 472 | 852 | 817 | 834 | 28.40 | 24.40 | 26.47 | 1 136.75 | 1 014.58 | 1 050.35 |
1 500 | 1 089 | 433 | 728 | 1 279 | 1 195 | 1 250 | 68.90 | 55.70 | 63.95 | 1 018.83 | 1 003.37 | 1 012.56 | |
2 000 | 1 170 | 348 | 626 | 1 711 | 1 628 | 1 670 | 117.80 | 109.30 | 113.88 | 1 115.69 | 1 006.74 | 1 010.29 | |
APF-RRT* | 1 000 | 239 | 395 | 320 | 739 | 678 | 704 | 26.80 | 34.60 | 30.61 | 1 005.69 | 1 002.84 | 1 003.78 |
1 500 | 569 | 277 | 384 | 1 102 | 983 | 1 060 | 68.79 | 50.50 | 57.81 | 1 003.00 | 1 002.35 | 1 002.78 | |
2 000 | 432 | 225 | 326 | 1 477 | 1 433 | 1 457 | 112.60 | 108.10 | 110.91 | 1 004.05 | 1 001.32 | 1 002.42 |
1 | Huang Yamin, Chen Linying, Chen Pengfei, et al. Ship Collision Avoidance Methods: State-of-the-art[J]. Safety Science, 2020, 121: 451-473. |
2 | Vagale Anete, Oucheikh Rachid, Bye Robin T, et al. Path Planning and Collision Avoidance for Autonomous Surface Vehicles I: A Review[J]. Journal of Marine Science and Technology, 2021, 26(4): 1292-1306. |
3 | Vagale Anete, Bye Robin T, Oucheikh Rachid, et al. Path Planning and Collision Avoidance for Autonomous Surface Vehicles II: A Comparative Study of Algorithms[J]. Journal of Marine Science and Technology, 2021, 26(4): 1307-1323. |
4 | Khatib O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. |
5 | Naeem W, Henrique S C, Hu Liang. A Reactive COLREGs-compliant Navigation Strategy for Autonomous Maritime Navigation[J]. IFAC-PapersOnLine, 2016, 49(23): 207-213. |
6 | Yaguchi Yuichi, Tamagawa Kyota. A Waypoint Navigation Method with Collision Avoidance Using an Artificial Potential Method on Random Priority[J]. Artificial Life and Robotics, 2020, 25(2): 278-285. |
7 | Hongguang Lü, Yin Yong. COLREGS-constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields[J]. Journal of Navigation, 2019, 72(3), 72: 588-608. |
8 | Zhang Liang, Mou Junmin, Chen Pengfei, et al. Path Planning for Autonomous Ships: A Hybrid Approach Based on Improved APF and Modified VO Methods[J]. Journal of Marine Science and Engineering, 2021, 9(7): 761. |
9 | Li Lingyu, Wu Defeng, Huang Youqiang, et al. A Path Planning Strategy Unified with a COLREGS Collision Avoidance Function Based on Deep Reinforcement Learning and Artificial Potential Field[J]. Applied Ocean Research, 2021, 113: 102759. |
10 | LaValle S M. Rapidly-exploring Random Trees: A New Tool for Path Planning[J]. Research Report 9811, 1998. |
11 | Karaman S, Frazzoli E. Sampling-based Algorithms for Optimal Motion Planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894. |
12 | LaValle S M. James J Kuffner Jr. Randomized Kinodynamic Planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378-400. |
13 | J J Ir Kuffner, LaValle S M. RRT-connect: An Efficient Approach to Single-query Path Planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. Piscataway, NJ, USA: IEEE, 2000: 995-1001. |
14 | Gammell Jonathan D, Srinivasa S S, Barfoot Timothy D. Informed RRT*: Optimal Sampling-based Path Planning Focused Via Direct Sampling of an Admissible Ellipsoidal Heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2014: 2997-3004. |
15 | Chiang H T L, Tapia L. COLREG-RRT: An RRT-based COLREGS-compliant Motion Planner for Surface Vehicle Navigation[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2024-2031. |
16 | Enevoldsen Thomas T, Galeazzi Roberto. Grounding-aware RRT⁎ for Path Planning and Safe Navigation of Marine Crafts in Confined Waters[J]. IFAC-PapersOnLine, 2021, 54(16): 195-201. |
17 | Zaccone Raphael, Martelli Michele. A Collision Avoidance Algorithm for Ship Guidance Applications[J]. Journal of Marine Engineering & Technology, 2020, 19(S1): 62-75. |
18 | Chen Xinjia, Liu Yanxia, Hong Xiaobin, et al. Unmanned Ship Path Planning Based on RRT[C]//Intelligent Computing Theories and Application. Cham: Springer International Publishing, 2018: 102-110. |
19 | Yuan Chengren, Liu Guifeng, Zhang Wenqun, et al. An Efficient RRT Cache Method in Dynamic Environments for Path Planning[J]. Robotics and Autonomous Systems, 2020, 131: 103595. |
20 | Taheri Ehsan, Mohammad Hossein Ferdowsi, Danesh Mohammad. Closed-loop Randomized Kinodynamic Path Planning for an Autonomous Underwater Vehicle[J]. Applied Ocean Research, 2019, 83: 48-64. |
21 | Tahir Zaid, Qureshi A H, Ayaz Yasar, et al. Potentially Guided Bidirectionalized RRT* for Fast Optimal Path Planning in Cluttered Environments[J]. Robotics and Autonomous Systems, 2018, 108: 13-27. |
22 | 裴以建, 杨超杰, 杨亮亮. 基于改进RRT*的移动机器人路径规划算法[J]. 计算机工程, 2019, 45(5): 285-290, 297. |
Pei Yijian, Yang Chaojie, Yang Liangliang. Path Planning Algorithm for Mobile Robot Based on Improved RRT* [J]. Computer Engineering, 2019, 45(5): 285-290, 297. | |
23 | Wang Xinyu, Li Xiaojuan, Yong Guan, et al. Bidirectional Potential Guided RRT* for Motion Planning[J]. IEEE Access, 2019, 7: 95046-95057. |
24 | Xi Yingqi, Shen Wei, Zhang Wen, et al. A Real-time Dynamic Path Planning Method Combining Artificial Potential Field Method and Biased Target RRT Algorithm[J]. Journal of Physics: Conference Series, 2021, 1905(1): 012015. |
25 | Zhu Jia, Zhao Shili, Zhao Ran. Path Planning for Autonomous Underwater Vehicle Based on Artificial Potential Field and Modified RRT[C]//2021 International Conference on Computer, Control and Robotics (ICCCR). Piscataway, NJ, USA: IEEE, 2021: 21-25. |
26 | Huang Shunyu. Path Planning Based on Mixed Algorithm of RRT and Artificial Potential Field Method[C]//2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE). Piscataway, NJ, USA: IEEE, 2021: 149-155. |
27 | Tang Xiaoya, Chen Feng. Robot Path Planning Algorithm Based on Bi-RRT and Potential Field[C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway, NJ, USA: IEEE, 2020: 1251-1256. |
28 | Lu Yafei, Wu Anping, Chen Qingyang, et al. An Improved UAV Path Planning Method Based on RRT-APF Hybrid Strategy[C]//2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE). Piscataway, NJ, USA: IEEE, 2020: 81-86. |
29 | An Hongrui, Hu Jiwei, Lou Ping. Obstacle Avoidance Path Planning Based on Improved APF and RRT[C]//2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). Piscataway, NJ, USA: IEEE, 2021: 1028-1032. |
30 | Yuan Qingni, Yi Junhui, Sun Ruitong, et al. Path Planning of a Mechanical Arm Based on an Improved Artificial Potential Field and a Rapid Expansion Random Tree Hybrid Algorithm[J]. Algorithms, 2021, 14(11): 321. |
31 | Gammell Jonathan D, Srinivasa S S, Barfoot Timothy D. Batch Informed Trees (BIT*): Sampling-based Optimal Planning Via the Heuristically Guided Search of Implicit Random Geometric Graphs[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2015: 3067-3074. |
32 | Choudhury S, Gammell Jonathan D, Barfoot Timothy D, et al. Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate Local Information into Optimal Path Planning[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2016: 4207-4214. |
33 | Sagar Suhas Joshi, Panagiotis Tsiotras. Non-parametric Informed Exploration for Sampling-based Motion Planning[C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 5915-5921. |
34 | Thomas Thuesen Enevoldsen, Reinartz Christopher, Galeazzi Roberto. COLREGs-informed RRT* for Collision Avoidance of Marine Crafts[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2021: 8083-8089. |
35 | Li Chenming, Wang Chaoqun, Wang Jiankun, et al. Sliding-window Informed RRT*: A Method for Speeding up the Optimization and Path Smoothing[C]//2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). Piscataway, NJ, USA: IEEE, 2021: 141-146. |
36 | Yi Daqing, Thakker R, Gulino C, et al. Generalizing Informed Sampling for Asymptotically-optimal Sampling-based Kinodynamic Planning Via Markov Chain Monte Carlo[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2018: 7063-7070. |
37 | Gustavo D O Véras Luiz, L L Medeiros Felipe, N F Guimaráes Lamartine. Systematic Literature Review of Sampling Process in Rapidly-exploring Random Trees[J]. IEEE Access, 2019, 7: 50933-50953. |
38 | 曹凯, 陈阳泉, 高嵩, 等. 涡流人工势场引导下的RRT*移动机器人路径规划[J]. 计算机科学与探索, 2021, 15(4): 723-732. |
Cao Kai, Chen Yangquan, Gao Song, et al. Vortex Artificial-potential-field Guided RRT* for Path Planning of Mobile Robot[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(4): 723-732. |
[1] | 张瑞, 周丽, 刘正洋. 融合RRT*与DWA算法的移动机器人动态路径规划[J]. 系统仿真学报, 2024, 36(4): 957-968. |
[2] | 李高扬, 黎向锋, 赵康, 金玉超, 易志东, 左敦稳. 全粒子推动野马优化算法的无人机三维路径规划[J]. 系统仿真学报, 2024, 36(3): 595-607. |
[3] | 闫星宇, 李大焱, 王妮娅, 张凯翔, 毛剑琳. 带障碍物惩罚因子的多机器人路径规划[J]. 系统仿真学报, 2024, 36(3): 673-685. |
[4] | 余翔, 姜陈, 段思睿, 邓千锐. 改进A*算法和人工势场法的路径规划[J]. 系统仿真学报, 2024, 36(3): 782-794. |
[5] | 庄鹤林, 夏小云, 李康顺, 陈泽丰, 张先超. 电动汽车路径规划模型与算法研究进展[J]. 系统仿真学报, 2024, 36(2): 320-337. |
[6] | 唐昀超, 祁少军, 朱立学, 卓献荣, 张芸齐, 孟繁. 移动机器人避障运动研究[J]. 系统仿真学报, 2024, 36(1): 1-26. |
[7] | 陈德峻, 方子豪, 曾云秀, 许凯. 战场迷雾中的欺骗路径规划[J]. 系统仿真学报, 2023, 35(9): 1895-1908. |
[8] | 李文静, 骆岩林, 王玉辉, 朱丽. 基于八叉树势场的鼻内镜虚拟导航路径规划[J]. 系统仿真学报, 2023, 35(9): 2054-2063. |
[9] | 林俊强, 王红军, 邹湘军, 张坡, 李承恩, 周益鹏, 姚书杰. 基于DPPO的移动采摘机器人避障路径规划及仿真[J]. 系统仿真学报, 2023, 35(8): 1692-1704. |
[10] | 杨来义, 毕敬, 苑海涛. 基于SAC算法的移动机器人智能路径规划[J]. 系统仿真学报, 2023, 35(8): 1726-1736. |
[11] | 曹梦龙, 赵文彬, 陈志强. 融合粒子群算法与改进灰狼算法的机器人路径规划[J]. 系统仿真学报, 2023, 35(8): 1768-1775. |
[12] | 杨海兰, 祁永强, 吴保磊, 荣丹, 洪妙英, 王军. 动态环境下基于忆阻强化学习的移动机器人路径规划[J]. 系统仿真学报, 2023, 35(7): 1619-1633. |
[13] | 宋大雷, 干文浩, 许嘤枝, 曲秀青, 曹江丽. 无人船实时路径规划与编队控制仿真研究[J]. 系统仿真学报, 2023, 35(5): 957-970. |
[14] | 吴玉文, 牛智越, 李珍萍. 基于改进遗传算法的货箱机器人拣选路径规划[J]. 系统仿真学报, 2023, 35(5): 1086-1097. |
[15] | 薛均晓, 孔祥燕, 董博威, 陶浩, 管海洋, 石磊, 徐明亮. 航母甲板上舰载机的混合避障和仿真[J]. 系统仿真学报, 2023, 35(3): 592-603. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||