系统仿真学报 ›› 2024, Vol. 36 ›› Issue (10): 2423-2434.doi: 10.16182/j.issn1004731x.joss.23-0768

• 论文 • 上一篇    

基于改进人工势场法的无人车路径规划与跟踪控制

郭明皓1, 姬鹏1, 黄海威2   

  1. 1.河北工程大学 机械与装备工程学院,河北 邯郸 056038
    2.昆易电子科技(上海)有限公司,上海 201400
  • 收稿日期:2023-06-26 修回日期:2023-08-23 出版日期:2024-10-15 发布日期:2024-10-18
  • 通讯作者: 姬鹏
  • 第一作者简介:郭明皓(1998-),女,硕士,研究方向为智能车路径规划与跟踪控制。
  • 基金资助:
    河北省引进留学人员(CL201704);河北省高等学校科学技术研究(ZD2019023)

Unmanned Vehicle Path Planning and Tracking Control Based on Improved Artificial Potential Field Method

Guo Minghao1, Ji Peng1, Huang Haiwei2   

  1. 1.School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China
    2.Kunyi Electronic Technology (Shanghai) Co. , LTD, Shanghai 201400, China
  • Received:2023-06-26 Revised:2023-08-23 Online:2024-10-15 Published:2024-10-18
  • Contact: Ji Peng

摘要:

针对无人车在换道超车复杂场景下躲避动态障碍物的工况,提出一种基于改进人工势场法的路径规划算法和基于模型预测控制器的跟踪控制策略。引入安全椭圆理论及预测距离概念调整势场影响区域通过加入速度势场改变势场函数解决车辆躲避动态障碍物的问题以线性三自由度车辆动力学模型为基础建立包含势场环境的模型预测控制器。通过CarSim/Simulink联合仿真验证算法的有效性。结果表明:该算法可有效解决传统势场法缺陷,提出的换道超车避障控制器对不同车速下的避障车辆跟踪效果良好,最大质心侧偏角均小于1°,前轮转角均在[-10°~10°]合理范围内,车辆能较好完成换道超车操作并且保持稳定性和安全性。

关键词: 无人车, 改进人工势场法, 路径规划, 跟踪控制, 模型预测控制器

Abstract:

A path planning algorithm based on improved artificial potential field method and a tracking control strategy based on model predictive controller are proposed for the unmanned vehicle avoiding dynamic obstacles in the complex scene of lane changing and overtaking. The theory of safety ellipse and the concept of prediction distance are introduced to adjust the influence region of potential field. By adding velocity potential field to change potential field function, the problem of vehicle avoiding dynamic obstacles is solved. Based on the linear three-degree-of-freedom vehicle dynamics model, a model prediction controller including potential field environment is established. The effectiveness of the algorithm is verified by CarSim/Simulink co-simulation. The results show that the proposed algorithm can effectively solve the defects of traditional potential field method and the proposed lane change overtaking obstacle avoidance controller has good tracking effect on the obstacle avoidance vehicles at different speeds,in which the maximum side deflection angle of the center of mass is less than 1°, and the front wheel angles are within the reasonable range [-10°~10°], The vehicle can better complete the lane change overtaking operation and maintain stability and safety.

Key words: unmanned vehicle, improved artificial potential field method, path planning, tracking control, model predictive control

中图分类号: