1 |
Department of Defense United States of America. Strategic Plan for Transforming DoD Training[EB/OL]. (2006-05-08) [2023-03-16]. .
|
2 |
Henninger A E, Cutts D, Loper M, et al. Live, Virtual, Constructive Architecture Roadmap (LVCAR) Final Report[R]. Washington DC: Institute for Defense Analysis, 2008.
|
3 |
United States Joint Forces Command. Joint Live Virtual and Constructive (JLVC) Federation Integration Guide[EB/OL]. (2009-01-24) [2023-08-11]. .
|
4 |
Edgren M G. Cloud-enabled Modular Services: A Framework for Cost-effective Collaboration[C]// Proceedings of the NATO Modelling and Simulation Group Symposium on Transforming Defense through Modelling and Simulation-Opportunities and Challenges. Arlington, USA: NATO STO, 2012. 1-10.
|
5 |
罗永亮, 张珺, 熊玉平, 等. 支持LVC仿真的航空指挥和保障异构系统集成技术[J]. 系统仿真学报, 2017, 29(10): 2538-2541.
|
|
Luo Yongliang, Zhang Jun, Xiong Yuping, et al. Air Command and Support Heterogeneous Systems Integration Technology Supporting LVC Simulation[J]. Journal of System Simulation, 2017, 29(10): 2538-2541.
|
6 |
刘影梅, 卿杜政. 基于"云+边缘"的建模仿真架构[J]. 自动化技术与应用, 2023, 42(2): 86-89.
|
|
Liu Yingmei, Duzheng Qing. Research on Modeling and Simulation Architecture Based on Microservices[J]. Techniques of Automation and Applications, 2023, 42(2): 86-89.
|
7 |
冯琦琦, 董志明, 彭文成, 等. 几种典型的虚实融合技术发展研究[J/OL]. 系统仿真学报. (2023-02-17) [2023-03-16]. .
|
|
Feng Qiqi, Dong Zhiming, Peng Wencheng, et al. Research on the Development of Several Typical Virtual Reality Fusion Technologies[J/OL]. Journal of System Simulation. (2023-02-17) [2023-03-16]. .
|
8 |
杨芸, 胡建军, 李京伟. LVC训练体系建设发展现状及关键技术[J]. 兵工自动化, 2023, 42(1): 4-15.
|
|
Yang Yun, Hu Jianjun, Li Jingwei. Development Status and Key Techniques of LVC Training System[J]. Ordnance Industry Automation, 2023, 42(1): 4-15.
|
9 |
National Institute of Standards and Technology. Workshop Report on Foundations for Innovation in Cyber-physical Systems[EB/OL]. (2013-01-01) [2023-08-11]. .
|
10 |
Habib M K, Chimsom I C. CPS: Role, Characteristics, Architectures and Future Potentials[J]. Procedia Computer Science, 2022, 200: 1347-1358.
|
11 |
Lee J, Bagheri B, Kao H A. A Cyber-physical Systems Architecture for Industry 4.0-based Manufacturing Systems[J]. Manufacturing Letters, 2015, 3: 18-23.
|
12 |
Cao Kun, Hu Shiyan, Shi Yang, et al. A Survey on Edge and Edge-cloud Computing Assisted Cyber-physical Systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7806-7819.
|
13 |
Ren Ju, Zhang Deyu, He Shiwen, et al. A Survey on End-edge-cloud Orchestrated Network Computing Paradigms: Transparent Computing, Mobile Edge Computing, Fog Computing, and Cloudlet[J]. ACM Computing Surveys, 2020, 52(6): 125.
|
14 |
Josifovska K, Yigitbas E, Engels G. Reference Framework for Digital Twins within Cyber-physical Systems[C]//2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). Piscataway, NJ, USA: IEEE, 2019: 25-31.
|
15 |
Alam K M, El Saddik A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-based Cyber-physical Systems[J]. IEEE Access, 2017, 5: 2050-2062.
|
16 |
Voge A, Ralph Klaus Müller, Kampa T, et al. Concept and Architecture for Information Exchange Between Digital Twins of the Product (CPS) and the Production System (CPPS)[J]. Procedia CIRP, 2021, 104: 1292-1297.
|
17 |
Rajabi Shishvan O, Zois D S, Soyata T. Machine Intelligence in Healthcare and Medical Cyber Physical Systems: A Survey[J]. IEEE Access, 2018, 6: 46419-46494.
|
18 |
Sood S K, Mahajan I. Fog-cloud Based Cyber-physical System for Distinguishing, Detecting and Preventing Mosquito Borne Diseases[J]. Future Generation Computer Systems, 2018, 88: 764-775.
|
19 |
Zhang Miao, Peng Yong, Yang Mei, et al. A Discrete PSO-based Static Load Balancing Algorithm for Distributed Simulations in a Cloud Environment[J]. Future Generation Computer Systems, 2021, 115: 497-516.
|
20 |
Zhang Miao, Peng Yong, Zhu Jiancheng, et al. Efficient Flow-based Scheduling for Geo-distributed Simulation Tasks in Collaborative Edge and Cloud Environments[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 3442-3459.
|
21 |
李仁发, 谢勇, 李蕊, 等. 信息-物理融合系统若干关键问题综述[J]. 计算机研究与发展, 2012, 49(6): 1149-1161.
|
|
Li Renfa, Xie Yong, Li Rui, et al. Survey of Cyber-physical Systems[J]. Journal of Computer Research and Development, 2012, 49(6): 1149-1161.
|
22 |
陈玉冰, 任熠营, 卢楚杰, 等. 面向信息物理系统的覆盖网构造方法[J]. 小型微型计算机系统, 2022, 43(2): 411-415.
|
|
Chen Yubing, Ren Yiying, Lu Chujie, et al. Method of Building Overlay Networks for the Cyber-physical Systems[J]. Journal of Chinese Computer Systems, 2022, 43(2): 411-415.
|
23 |
陈刚, 李志勇. 集合约束下多智能体系统分布式固定时间优化控制[J]. 自动化学报, 2022, 48(9): 2254-2264.
|
|
Chen Gang, Li Zhiyong. Distributed Fixed-time Optimization Control for Multi-agent Systems with Set Constraints[J]. Acta Automatica Sinica, 2022, 48(9): 2254-2264.
|
24 |
郑毅, 李少远, 魏永松. 通讯信息约束下具有全局稳定性的分布式系统预测控制[J]. 控制理论与应用, 2017, 34(5): 575-585.
|
|
Zheng Yi, Li Shaoyuan, Wei Yongsong. Global Stabilizing Distributed Model Predictive Control Systems with Limited Communication[J]. Control Theory & Applications, 2017, 34(5): 575-585.
|
25 |
关新平, 陈彩莲, 杨博, 等. 工业网络系统的感知-传输-控制一体化: 挑战和进展[J]. 自动化学报, 2019, 45(1): 25-36.
|
|
Guan Xinping, Chen Cailian, Yang Bo, et al. Towards the Integration of Sensing, Transmission and Control for Industrial Network Systems: Challenges and Recent Developments[J]. Acta Automatica Sinica, 2019, 45(1): 25-36.
|
26 |
蔡继红, 卿杜政, 谢宝娣. 支持LVC互操作的分布式联合仿真技术研究[J]. 系统仿真学报, 2015, 27(1): 93-97.
|
|
Cai Jihong, Duzheng Qing, Xie Baodi. Research of Joint Simulation Platform Supporting Interoperability of LVC[J]. Journal of System Simulation, 2015, 27(1): 93-97.
|