1 |
Hu Fuwen. Mutual Information-enhanced Digital Twin Promotes Vision-guided Robotic Grasping[J]. Advanced Engineering Informatics, 2022, 52: 101562.
|
2 |
Kleeberger Kilian, Bormann Richard, Kraus Werner, et al. A Survey on Learning-based Robotic Grasping[J]. Current Robotics Reports, 2020, 1(4): 239-249.
|
3 |
Real E, Moore S, Selle A, et al. Large-scale Evolution of Image Classifiers[C]//Proceedings of the 34th International Conference on Machine Learning. Cambridge: JMLR, 2017: 2902-2911.
|
4 |
Akinola I, Angelova A, Lu Yao, et al. Visionary: Vision Architecture Discovery for Robot Learning[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2021: 10779-10785.
|
5 |
Liu Yongkui, Xu He, Liu Ding, et al. A Digital Twin-based Sim-to-real Transfer for Deep Reinforcement Learning-enabled Industrial Robot Grasping[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102365.
|
6 |
Grieves M. Digital Twin: Manufacturing Excellence Through Virtual Factory Replication[J]. White paper, 2014, 1: 1-7.
|
7 |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
|
|
Tao Fei, Liu Weiran, Zhang Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
|
8 |
Tipary Bence, Erdős Gábor. Generic Development Methodology for Flexible Robotic Pick-and-place Workcells Based on Digital Twin[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102140.
|
9 |
徐健, 宋鑫, 刘秀平, 等. 基于数字孪生的装配机器人建模及系统实现[J]. 系统仿真学报, 2023, 35(7): 1497-1507.
|
|
Xu Jian, Song Xin, Liu Xiuping, et al. Modeling and System Realization of Assembly Robot Based on Digital Twin[J]. Journal of System Simulation, 2023, 35(7): 1497-1507.
|
10 |
刘怀兰, 赵文杰, 李世壮, 等. 数字孪生车间机器人虚实驱动系统构建方法[J]. 中国机械工程, 2022, 33(21): 2623-2632.
|
|
Liu Huailan, Zhao Wenjie, Li Shizhuang, et al. Construction Method of Virtual-real Drive Systems for Robots in Digital Twin Workshops[J]. China Mechanical Engineering, 2022, 33(21): 2623-2632.
|
11 |
Kuts Vladimir, Otto Tauno, Tähemaa Toivo, et al. Digital Twin Based Synchronised Control and Simulation of the Industrial Robotic Cell Using Virtual Reality[J]. Journal of Machine Engineering, 2019, 19(1): 128-144.
|
12 |
王剑, 王好臣, 李学伟, 等. 基于OPC UA的数字孪生车间信息物理融合系统[J]. 现代制造工程, 2023(4): 43-50.
|
|
Wang Jian, Wang Haochen, Li Xuewei, et al. Digital Twin Workshop Information Physical Fusion System Based on OPC UA[J]. Modern Manufacturing Engineering, 2023(4): 43-50.
|
13 |
乔峰丽, 苗鸿宾, 纪慧君, 等. 面向数字孪生的工业机械臂手眼标定方法的研究[J]. 机床与液压, 2023, 51(1): 31-35.
|
|
Qiao Fengli, Miao Hongbin, Ji Huijun, et al. Research on Hand-eye Calibration Method for Digital Twin Oriented Industrial Manipulator[J]. Machine Tool & Hydraulics, 2023, 51(1): 31-35.
|
14 |
马喜平, 李迪, 姚侠楠, 等. 基于Tsai两步法的视觉点胶系统相机标定方法[J]. 自动化与仪表, 2018, 33(5): 1-4, 18.
|
|
Ma Xiping, Li Di, Yao Xianan, et al. Camera Calibration of Visual Dispensing System Based on Tsai's Two-step Method[J]. Automation & Instrumentation, 2018, 33(5): 1-4, 18.
|
15 |
Kyu Tae Park, Lee Donggun, Sang Do Noh. Operation Procedures of a Work-center-level Digital Twin for Sustainable and Smart Manufacturing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(3): 791-814.
|
16 |
周学广, 吕伟栋, 袁志民. 基于着色Petri网的舰艇指挥控制信息流建模研究[J]. 系统仿真学报, 2019, 31(5): 828-842.
|
|
Zhou Xueguang, Weidong Lü, Yuan Zhimin. Colored Petri Net Based Modeling on Warship Command and Control Information Flow[J]. Journal of System Simulation, 2019, 31(5): 828-842.
|
17 |
Perzylo Alexander, Profanter Stefan, Rickert Markus, et al. OPC UA NodeSet Ontologies as a Pillar of Representing Semantic Digital Twins of Manufacturing Resources[C]//2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway, NJ, USA: IEEE, 2019: 1085-1092.
|
18 |
束长宝, 于照, 张继勇. 基于TCP/IP的网络通信及其应用[J]. 微计算机信息, 2006(36): 157-159.
|
|
Shu Changbao, Yu Zhao, Zhang Jiyong. Network Communication and Its Applications Based on TCP/IP[J]. Microcomputer Information, 2006(36): 157-159.
|
19 |
Lenz I, Lee H, Saxena A. Deep Learning for Detecting Robotic Grasps[J]. International Journal of Robotics Research, 2015, 34(4/5): 705-724.
|
20 |
Wohlkinger Walter, Aldoma Aitor, Rusu R B, et al. 3DNet: Large-scale Object Class Recognition from CAD Models[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2012: 5384-5391.
|