1 |
Rusinque Leidy, Maleita Carla, Abrantes Isabel, et al. Meloidogyne Graminicola-A Threat to Rice Production: Review Update on Distribution, Biology, Identification, and Management[J]. Biology, 2021, 10(11): 1163.
|
2 |
Qiu Jing, Lu Xiaolei, Wang Xingxing, et al. Research on Rice Disease Identification Model Based on Migration Learning in VGG Network[J]. IOP Conference Series: Earth and Environmental Science, 2021, 680(1): 012087.
|
3 |
Bashir K, Rehman M, Bari M. Detection and Classification of Rice Diseases: An Automated Approach Using Textural Features[J]. Mehran University Research Journal of Engineering and Technology, 2019, 38(1): 239-250.
|
4 |
Saha S, Ahsan S M M. Rice Disease Detection Using Intensity Moments and Random Forest[C]//2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). Piscataway, NJ, USA: IEEE, 2021: 166-170.
|
5 |
Sharma Vikas, Aftab Ahmad Mir, Sarwr Abid. Detection of Rice Disease Using Bayes' Classifier and Minimum Distance Classifier[J]. Journal of Multimedia Information System, 2020, 7(1): 17-24.
|
6 |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-10-28]. .
|
7 |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|
8 |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2818-2826.
|
9 |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[C]//Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2017: 4278-4284.
|
10 |
Niu Zhaoyang, Zhong Guoqiang, Yu Hui. A Review on the Attention Mechanism of Deep Learning[J]. Neurocomputing, 2021, 452: 48-62.
|
11 |
Hughes D P, Salathé Marcel. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics[EB/OL]. (2016-04-12) [2023-01-03]. .
|
12 |
Prabira Kumar Sethy, Negi Baishalee, Nalini Kanta Barpanda, et al. Measurement of Disease Severity of Rice Crop Using Machine Learning and Computational Intelligence[M]//Sasikumar Gurumoorthy, Bangole Narendra Kumar Rao, Gao Xiaozhi. Cognitive Science and Artificial Intelligence: Advances and Applications. Singapore: Springer Singapore, 2018: 1-11.
|
13 |
Shrivastava Vimal K, Pradhan Monoj K. Rice Plant Disease Classification Using Color Features: A Machine Learning Paradigm[J]. Journal of Plant Pathology, 2021, 103(1): 17-26.
|
14 |
Mohapatra Subasish, Marandi Chandan, Sahoo Amlan, et al. Rice Leaf Disease Detection and Classification Using a Deep Neural Network[C]//Computing, Communication and Learning. Cham: Springer Nature Switzerland, 2022: 231-243.
|
15 |
Chen Zhaoyi, Wu Ruhui, Lin Yiyan, et al. Plant Disease Recognition Model Based on Improved YOLOv5[J]. Agronomy, 2022, 12(2): 365.
|
16 |
Chen Junde, Zhang Defu, Zeb Adnan, et al. Identification of Rice Plant Diseases Using Lightweight Attention Networks[J]. Expert Systems with Applications, 2021, 169: 114514.
|
17 |
Jaderberg M, Simonyan K, Zisserman A, et al. Spatial Transformer Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2015: 2017-2025.
|
18 |
Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 13708-13717.
|
19 |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved Training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 5769-5779.
|
20 |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141.
|
21 |
Woo Sanghyun, Park Jongchan, Young Lee Joon, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
22 |
Nandhini S, Ashokkumar K. An Automatic Plant Leaf Disease Identification Using DenseNet-121 Architecture with a Mutation-based Henry Gas Solubility Optimization Algorithm[J]. Neural Computing and Applications, 2022, 34(7): 5513-5534.
|
23 |
Poornima Singh Thakur, Sheorey Tanuja, Ojha Aparajita. VGG-ICNN: A Lightweight CNN Model for Crop Disease Identification[J]. Multimedia Tools and Applications, 2023, 82(1): 497-520.
|