系统仿真学报 ›› 2024, Vol. 36 ›› Issue (2): 476-486.doi: 10.16182/j.issn1004731x.joss.22-1168

• 论文 • 上一篇    下一篇

基于卷积长短时记忆网络的短时公交客流量预测

陈静1(), 张昭冲1(), 王琳凯1, 安脉2, 王伟1   

  1. 1.天津职业技术师范大学 信息技术工程学院,天津 300222
    2.中新天津生态城管委会 智慧城市发展局,天津 300467
  • 收稿日期:2022-10-04 修回日期:2022-12-08 出版日期:2024-02-15 发布日期:2024-02-04
  • 通讯作者: 张昭冲 E-mail:c_j_223@163.com;s789658@qq.com
  • 第一作者简介:陈静(1984-),女,副教授,硕士生导师,博士,研究方向为机器学习。E-mail:c_j_223@163.com
  • 基金资助:
    天津市教委科研计划(2021KJ008)

Short-term Bus Passenger Flow Prediction Based on Convolutional Long-short-term Memory Network

Chen Jing1(), Zhang Zhaochong1(), Wang Linkai1, An Mai2, Wang Wei1   

  1. 1.School of Information Technology and Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
    2.Smart City Development Authority, Sino-Singapore Tianjin Eco-city Management Committee, Tianjin 300467, China
  • Received:2022-10-04 Revised:2022-12-08 Online:2024-02-15 Published:2024-02-04
  • Contact: Zhang Zhaochong E-mail:c_j_223@163.com;s789658@qq.com

摘要:

针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。

关键词: 卷积神经网络, 长短时记忆网络, 时空数据预测, k-means聚类, 客流量预测

Abstract:

To address the problem that the traditional short-time passenger flow prediction method does not consider the temporal characteristics similarity between the inter-temporal passenger flows, a short-time passenger flow prediction model k-CNN-LSTM is proposed by combining the improved k-means clustering algorithm with the CNN and the LSTM. The k-means is used to cluster the intertemporal time-series data, the k-value is determined by using the gap-statistic, and a traffic flow matrix model is constructed. A CNN-LSTM network is used to process the short-time passenger flows with spatial and temporal characteristics. The model is tested and parameter tuned by the real dataset. The test results show the model is able to predict the spatially correlated data more accurately.

Key words: CNN, LSTM, spatiotemporal data prediction, k-means clustering, passenger flow prediction

中图分类号: