1 |
李新利, 邹昌铭, 杨国田, 等. 基于生成式对抗网络的发票图像超分辨率研究[J]. 系统仿真学报, 2021, 33(6): 1307-1314.
|
|
Li Xinli, Zou Changming, Yang Guotian, et al. Research of Super-resolution Processing of Invoice Image Based on Generative Adversarial Network[J]. Journal of System Simulation, 2021, 33(6): 1307-1314.
|
2 |
胡蕾, 王足根, 陈田, 等. 一种改进的SRGAN红外图像超分辨率重建算法[J].系统仿真学报, 2021, 33(9): 2109-2118.
|
|
Hu Lei, Wang Zugen, Chen Tian, et al. An Improved SRGAN Infrared Image Super-Resolution Reconstruction Algorithm[J]. Journal of System Simulation, 2021, 33(9): 2109-2118.
|
3 |
Dong C, Loy C C, He K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2015, 38(2): 295-307.
|
4 |
Dong Chao, Chen Change Loy, Tang Xiaoou. Accelerating the Super-Resolution Convolutional Neural Network[C]//European Conference on Computer Vision. Las Vegas, USA: Springer, 2016: 391-407.
|
5 |
Shi W, Caballero J, Huszar F, et al. Real-time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 1874-1883.
|
6 |
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV: IEEE, 2016: 770-778.
|
7 |
Kim J, Kwon Lee J, Mu Lee K. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 1646-1654.
|
8 |
Lim B, Son S, Kim H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI: IEEE, 2017: 136-144.
|
9 |
Tai Ying, Yang Jian, Liu Xiaoming. Image Super-Resolution Via Deep Recursive Residual Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 3147-3155.
|
10 |
Zhang Y, Li K, Li K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]//European Conference on Computer Vision(ECCV). Munich, Germany: ECCV, 2018: 286-301.
|
11 |
Haris M, Shakhnarovich G, Ukita N. Deep Back-Projection Networks for Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673.
|
12 |
Li Z, Yang J, Liu Z, et al. Feedback Network for Image Super-Resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 3867-3876.
|
13 |
Krizhevsky Alex, Sutskever Ilya, Geoffrey E Hinton. ImageNet Classification with Deep Convolutional Neural Networks[C]//Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, United States, 2012: 1106-1114.
|
14 |
程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605-618.
|
|
Cheng Deqiang, Guo Xin, Chen Liangliang, et al. Image Super-resolution Reconstruction from Multi-channel Recursive Residual Network[J]. Journal of Image and Graphics, 2021, 26(3): 605-618.
|
15 |
应自炉, 龙祥. 多尺度密集残差网络的单幅图像超分辨率重建[J]. 中国图象图形学报, 2019, 24(3): 410-419.
|
|
Ying Zilu, Long Xiang. Single-image Super-resolution Construction Based on Multi-scale Dense Residual Network[J]. Journal of Image and Graphics, 2019, 24(3): 410-419.
|
16 |
Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141.
|
17 |
雷鹏程, 刘丛, 唐坚刚, 等. 分层特征融合注意力网络图像超分辨率重建[J]. 中国图象图形学报, 2020, 25(9): 1773-1786.
|
|
Lei Pengcheng, Liu Cong, Tang Jiangang, et al. Hierarchical Feature Fusion Attention Network for Image Super-resolution Reconstruction[J]. Journal of Image and Graphics, 2020, 25(9): 1773-1786.
|
18 |
Li Q, Li Z, Lu L, et al. Gated Multiple Feedback Network for Image Super-Resolution[C]//30th British Machine Vision Conference 2019, Cardiff, UK: BMVA Press, 2019: 188-205.
|
19 |
施举鹏, 李静, 陈琰, 等. DFAN:一种基于深度反馈注意力网络的图像超分辨率方法[J]. 小型微型计算机系统, 2021, 42(6): 1206-1212.
|
|
Shi Jupeng, Li Jing, Cheng Yan, et al. DFAN: An Image Super-resolution Method Based on Depth Feedback Attention Network[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1206-1212.
|
20 |
Bevilacqua M, Roumy A, Guillemot C, et al. Low-Complexity Singleimage Super-Resolution Based on Nonnegative Neighbor Embedding[C]//2012 British Machine Vision Conference. Durham: BMVA Press, 2012: 135.
|
21 |
Zeyde R, Elad M, Protter M. On Single Image Scale-up Using Sparserepresentations[C]//7th International Conference on Curves and Surfaces. Berlin: Springer, 2010: 711-730.
|
22 |
Martin D, Fowlkes C, Tal D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]//2001 Eighth IEEE International Conference on Computer Vision. Canada: IEEE, 2001: 416-423.
|
23 |
Huang J B, Singh A, Ahuja N. Single Image Super-Resolution from Transformed Self-Exemplars[C]//2015 Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2015: 5197-5206.
|