系统仿真学报 ›› 2023, Vol. 35 ›› Issue (7): 1572-1580.doi: 10.16182/j.issn1004731x.joss.22-0278

• 论文 • 上一篇    下一篇

基于自适应感受野的电力设备表面缺陷检测方法

于豪1(), 蒋锦霞2, 赖晓翰2, 梅峰2, 王庆1()   

  1. 1.西北工业大学 计算机学院,陕西 西安 710072
    2.国网浙江省电力有限公司 信息通信分公司,浙江 杭州 310020
  • 收稿日期:2022-03-28 修回日期:2022-07-12 出版日期:2023-07-29 发布日期:2023-07-19
  • 通讯作者: 王庆 E-mail:yh97@mail.nwpu.edu.cn;qwang@nwpu.edu.cn
  • 作者简介:于豪(1998-),男,硕士生,研究方向为计算机视觉和机器学习。E-mail:yh97@mail.nwpu.edu.cn
  • 基金资助:
    国家电网公司总部科技项目(5700-202019186A-0-0-00)

Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network

Hao Yu1(), Jinxia Jiang2, Xiaohan Lai2, Feng Mei2, Qing Wang1()   

  1. 1.School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
    2.Information & Telecommunication Branch, State Grid Zhejiang Electric Power Co. , Ltd. , Hangzhou 310020, China
  • Received:2022-03-28 Revised:2022-07-12 Online:2023-07-29 Published:2023-07-19
  • Contact: Qing Wang E-mail:yh97@mail.nwpu.edu.cn;qwang@nwpu.edu.cn

摘要:

针对变电站电力设备覆冰、锈蚀、污秽等缺陷检测问题,提出了一种新的自适应感受野网络,其中结合注意力机制的自适应感受野模块可对多尺度特征进行有效融合。考虑到缺陷检测的小样本学习属性,还提出了一种基于真实纹理的电力设备表面缺陷仿真数据合成方法。在仿真数据集上的实验结果表明,该网络对跨设备表面缺陷的检测精度较高,同时具有体积小、运算速度快等优点。

关键词: 表面缺陷检测, 自适应感受野, 注意力机制, 多尺度特征, 仿真数据合成

Abstract:

For the detection of defects such as icing, rust, and contamination of power equipment in substations, a novel adaptive receptive field network (ARFN) is proposed,in which an adaptive receptive field module (ARFM) combined with the attention mechanism can effectively fuse multi-scale features. Considering the small sample learning attribute of defect detection, a power equipment surface defect simulation data synthesis method based on real texture is also proposed. The experimental results on the simulation dataset show that the network has high detection accuracy for surface defects across devices, while having advantages such as small size and fast operation speed.

Key words: surface defect detection, adaptive receptive field, attention mechanism, multi-scale feature, simulation data synthesis

中图分类号: