1 |
吴森堂. 导弹自主编队协同制导控制技术[M]. 北京: 国防工业出版社, 2015.
|
|
Wu Sentang. Cooperative Guidance & Control of Missiles Autonomous Formation[M]. Beijing: National Defense Industry Press, 2015.
|
2 |
高昂, 董志明, 叶红兵, 等. 基于深度强化学习的巡飞弹突防控制决策[J]. 兵工学报, 2021, 42(5): 1101-1110.
|
|
Gao Ang, Dong Zhiming, Ye Hongbing, et al. Loitering Munition Penetration Control Decision Based on Deep Reinforcement Learning[J]. Acta Armamentarii, 2021, 42(5): 1101-1110.
|
3 |
程进, 罗世彬, 宋闯, 等. 弹群协同与自主决策[M]. 北京: 科学出版社, 2020.
|
|
Cheng Jin, Luo Shibin, Song Chuang, et al. Missile-group Coordination and Autonomous Decision-making[M]. Beijing: Science Press, 2020.
|
4 |
曲婉嘉, 徐忠林, 张柏林, 等. 基于贝叶斯网络云模型的目标毁伤评估方法[J]. 兵工学报, 2016, 37(11): 2075-2084.
|
|
Qu Wanjia, Xu Zhonglin, Zhang Bolin, et al. Battle Damage Assessment Method Based on BN-cloud Model[J]. Acta Armamentarii, 2016, 37(11): 2075-2084.
|
5 |
Mujica L E, Rodellar J, Fernández A, et al. Q-statistic and T2-statistic PCA-based Measures for Damage Assessment in Structures[J]. Structural Health Monitoring, 2011, 10(5): 539-553.
|
6 |
杨青青, 樊桂花. 基于改进模糊综合评判法的建筑物毁伤效果评估[J]. 系统工程与电子技术, 2018, 40(9): 2026-2031.
|
|
Yang Qingqing, Fan Guihua. Battle Damage Assessment of Buildings Based on Improved Fuzzy Comprehensive Evaluation Method[J]. Systems Engineering and Electronics, 2018, 40(9): 2026-2031.
|
7 |
田福平, 汶博, 郑鹏鹏. 基于贝叶斯网络的作战目标评估[J]. 火力与指挥控制, 2017, 42(2): 79-82.
|
|
Tian Fuping, Wen Bo, Zheng Pengpeng. Warfare Targets Assessment Based on Bayesian Network[J]. Fire Control & Command Control, 2017, 42(2): 79-82.
|
8 |
马晓明, 丁平, 晏卫东. 基于贝叶斯网络的舰船目标毁伤评估[J]. 兵工自动化, 2016, 35(6): 72-75.
|
|
Ma Xiaoming, Ding Ping, Yan Weidong. Warship-damage Assessment Based on Bayesian Networks[J]. Ordnance Industry Automation, 2016, 35(6): 72-75.
|
9 |
杨凯达. 加入毁伤时间流的目标毁伤效果评估方法[J]. 舰船电子工程, 2022, 42(4): 129-134, 170.
|
|
Yang Kaida. Method of Battle Damage Assessment with Damage Time Stream[J]. Ship Electronic Engineering, 2022, 42(4): 129-134, 170.
|
10 |
Kuncheva L I, Faithfull W J. PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 69-80.
|
11 |
Li Qiang, Gong Lixia, Zhang Jingfa. A Correlation Change Detection Method Integrating PCA and Multi- texture Features of SAR Image for Building Damage Detection[J]. European Journal of Remote Sensing, 2019, 52(1): 435-447.
|
12 |
Wu Chen, Chen Hong ruiuan, Du Bo, et al. Unsupervised Change Detection in Multitemporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network[J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12084-12098.
|
13 |
Yousif Osama, Ban Yifang. Improving Urban Change Detection from Multitemporal SAR Images Using PCA-NLM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2032-2041.
|
14 |
涂震飚, 林涛. 基于下视图像的打击效果评估系统研究[J]. 战术导弹技术, 2012(5): 6-9.
|
|
Tu Zhenbiao, Lin Tao. Research on Battle Damage Assessment System Based on Downward-looking Scene Image[J]. Tactical Missile Technology, 2012(5): 6-9.
|
15 |
Anastasopoulos I, Anastasopoulos P C, Agalianos A, et al. Simple Method for Real-time Seismic Damage Assessment of Bridges[J]. Soil Dynamics and Earthquake Engineering, 2015, 78: 201-212.
|
16 |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|
17 |
余丽山, 李彦彬, 赵永龙, 等. 基于BP神经网络的飞机抗毁伤能力评估[J]. 弹箭与制导学报, 2018, 38(1): 23-26.
|
|
Yu Lishan, Li Yanbin, Zhao Yonglong, et al. Assessment of Aircraft Anti Damage Capability Based on BP Neural Network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 23-26.
|
18 |
张宗腾, 张琳, 谢春燕, 等. 基于改进GA-BP神经网络的目标毁伤效果评估[J]. 火力与指挥控制, 2021, 46(11): 43-48.
|
|
Zhang Zongteng, Zhang Lin, Xie Chunyan, et al. Battle Damage Effect Assessment Based on Improved GA-BP Neural Network[J]. Fire Control & Command Control, 2021, 46(11): 43-48.
|
19 |
Shen Yu, Zhu Sijie, Yang Taojianan, et al. BDANet: Multiscale Convolutional Neural Network with Cross-directional Attention for Building Damage Assessment from Satellite Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
|
20 |
Sarath P, Soorya M, Shaik Abdul Rahman A, et al. Assessing Car Damage Using Mask R-CNN[J]. International Journal of Engineering and Advanced Technology, 2020, 9(3): 2287-2290.
|
21 |
Alqahtani H, Ray A. Neural Network-based Automated Assessment of Fatigue Damage in Mechanical Structures[J]. Machines, 2020, 8(4): 85.
|
22 |
Xu Jinglin, Zeng Feng, Liu Wen, et al. Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning[J]. Applied Sciences, 2022, 12(10): 4912.
|
23 |
Tang Shimin, Chen Zhiqiang. Understanding Natural Disaster Scenes from Mobile Images Using Deep Learning[J]. Applied Sciences, 2021, 11(9): 3952.
|