系统仿真学报 ›› 2024, Vol. 36 ›› Issue (2): 511-521.doi: 10.16182/j.issn1004731x.joss.22-1130

• 论文 • 上一篇    下一篇

基于多源信息融合的巡飞弹对地目标识别与毁伤评估

徐艺博1(), 于清华1(), 王炎娟2, 郭策1, 冯世如3, 卢惠民1   

  1. 1.国防科技大学 智能科学学院,湖南 长沙 410073
    2.北京航天飞行控制中心,北京 100094
    3.深圳天富创科技有限公司,广东 深圳 518000
  • 收稿日期:2022-09-24 修回日期:2023-01-10 出版日期:2024-02-15 发布日期:2024-02-04
  • 通讯作者: 于清华 E-mail:yiboxybxf@163.com;yuqinghua@nudt.edu.cn
  • 第一作者简介:徐艺博(1997-),男,博士生,研究方向为深度学习与人工智能可解释性。E-mail:yiboxybxf@163.com

Ground Target Recognition and Damage Assessment of Patrol Missiles Based on Multi-source Information Fusion

Xu Yibo1(), Yu Qinghua1(), Wang Yanjuan2, Guo Ce1, Feng Shiru3, Lu Huimin1   

  1. 1.College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
    2.Beijing Aerospace Control Center, Beijing 100094, China
    3.Shenzhen TFC Technology co. , Ltd, Shenzhen 518000, China
  • Received:2022-09-24 Revised:2023-01-10 Online:2024-02-15 Published:2024-02-04
  • Contact: Yu Qinghua E-mail:yiboxybxf@163.com;yuqinghua@nudt.edu.cn

摘要:

面向利用多枚巡飞弹对地面高防御移动目标进行打击的任务场景,提出一种基于多源信息融合的巡飞弹对地移动目标识别与毁伤评估方法。基于IoU判定实现红外图像与可见光图像的多源信息融合;提出一种基于YOLO-VGGNet的两阶段紧耦合的巡飞弹对地移动目标毁伤评估方法,利用卷积神经网络深度语义信息提取的优势,引入红外毁伤信息,实现对地面移动目标的在线实时毁伤评估实验结果表明:基于多源信息融合的目标识别算法有效提升了巡飞弹对地面移动目标识别的有效性;基于YOLO-VGGNet的在线实时毁伤等级评估方法较传统基于图像变化检测与基于两阶段卷积神经网络的方法评估准确率分别提升19%和10.25%。

关键词: 多源信息融合, 毁伤评估, 卷积神经网络, YOLO-VGGNet, 在线实时评估

Abstract:

For the multiple patrol missiles to attack the high defense capacity targets, a mobile ground target detection and damage assessment method based on multi-source information fusion is proposed. The multi-source information fusion of infrared images and RGB images is carried out by using IoU determination. A novel two-stage tightly coupled damage assessment method based on YOLO-VGGNet of patrol missiles to mobile ground targets is proposed. This method can fully use the advantage of deep semantic information extraction of CNNs and introduce the infrared damaging information simultaneously to achieve the online and real-time damage assessment of mobile ground targets. The results of simulation experiments show that the target recognition algorithm based on multi-source information fusion significantly improves the detection of mobile ground targets of patrol missiles. Compared with the traditional image-change-detection-based method and the two-CNN learning-based method, the real-time and online damage level assessment method based on YOLO-VGGNet improves the accuracy by 19% and 10.3%, respectively.

Key words: multi-source information fusion, damage assessment, convolutional neural networks, YOLO-VGGNet, online real-time assessment

中图分类号: