Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (6): 1352-1365.doi: 10.16182/j.issn1004731x.joss.24-1164
• Modeling and Simulation of New Quality Transportation Systems • Previous Articles
Han Bing1,2,3, Lin Yunhe1, Chen Yuhang1,3, Peng Zhouhua2
Received:
2024-10-21
Revised:
2024-12-09
Online:
2025-06-20
Published:
2025-06-18
Contact:
Lin Yunhe
CLC Number:
Han Bing, Lin Yunhe, Chen Yuhang, Peng Zhouhua. Modeling and Simulation of Dual-podded-propulsion Ship Motions[J]. Journal of System Simulation, 2025, 37(6): 1352-1365.
Table 6
Turning performance metrics
仿真 | 性能指标 | 仿真值 | 实际值 | 相对误差 |
---|---|---|---|---|
右旋 | 进距 | 214.97 m | 232.66 m | -0.076 |
横距 | 132.43 m | 119.50 m | 0.108 | |
旋回初径 | 308.74 m | 342.55 m | -0.098 8 | |
稳定直径 | 295.78 m | 296.71 m | -0.003 | |
终末u | 10.35 kn | 10.40 kn | -0.005 | |
稳态r | 2.06 (°)/s | 2.03 (°)/s | 0.014 8 | |
左旋 | 进距 | 217.17 m | 249.63 m | -0.130 |
横距 | 133.26 m | 101.50 m | 0.313 | |
旋回初径 | 310.16 m | 330.78 m | -0.062 | |
稳定直径 | 298.40 m | 306.04 m | -0.025 0 | |
终末u | 8.21 kn | 8.40 kn | -0.022 6 | |
稳态r | -1.62 (°)/s | -1.62 (°)/s | 0 |
Table 7
Zig-zag performance metrics
仿真 | 性能指标 | 仿真值 | 实际值 | 相对误差 |
---|---|---|---|---|
I | 10.4 s | 10.0 s | 0.04 | |
6.0° | 5.8° | 0.034 | ||
19.8 s | 21.0 s | -0.057 | ||
8.79° | 12.90° | -0.319 | ||
51 s | 61 s | -0.164 | ||
II | 14.6 s | 17.0 s | -0.141 | |
12.73° | 10.50° | 0.212 | ||
28 s | 28 s | 0 | ||
15.3° | 15.3° | 0 | ||
70.6 s | 71.0 s | -0.006 | ||
III | 39.6s | 41s | -0.034 | |
15.20° | 12.40° | 0.226 | ||
67.2 s | 67 s | 0.003 | ||
15.62° | 13.50° | 0.157 | ||
174.8 s | 181.0 s | -0.034 |
1 | 吴鹏, 杨宗默, 景乾峰, 等. 一种用于船舶操纵运动快速建模的混合经验法[J]. 系统仿真学报, 2023, 35(10): 2150-2160. |
Wu Peng, Yang Zongmo, Jing Qianfeng, et al. A Hybrid Empirical Method for Fast Modeling of Ship Manoeuvring Motion[J]. Journal of System Simulation, 2023, 35(10): 2150-2160. | |
2 | 杨帆, 刘佳仑, 于淳, 等. 虚实融合的船舶智能航行测试技术[J]. 中国航海, 2022, 45(3): 113-122. |
Yang Fan, Liu Jialun, Yu Chun, et al. Test Technology for Intelligent Navigation with Mix of Virtual and Actual Reality[J]. Navigation of China, 2022, 45(3): 113-122. | |
3 | 金建海, 周则兴, 张波, 等. 无人艇航行仿真关键技术研究[J]. 系统仿真学报, 2021, 33(12): 2846-2853. |
Jin Jianhai, Zhou Zexing, Zhang Bo, et al. Research on USV Navigation Simulation Key Technologies[J]. Journal of System Simulation, 2021, 33(12): 2846-2853. | |
4 | 张国庆, 张显库. 船舶运动数学模型与MATLAB仿真[M]. 徐州: 中国矿业大学出版社, 2020. |
5 | 王雨薇, 王伟, 吴江涛, 等. 大连海事大学智能研究与实训两用船"新红专"轮交付命名[EB/OL]. (2024-07-08) [2024-09-01]. . |
6 | FOSSEN T I. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2021. |
7 | 吴兴亚, 高霄鹏. 全回转双桨船舶操纵性预报[J]. 中国舰船研究, 2017, 12(1): 27-31, 62. |
Wu Xingya, Gao Xiaopeng. Maneuverability Prediction for a Ship with Full-revolving Twin Propellers[J]. Chinese Journal of Ship Research, 2017, 12(1): 27-31, 62. | |
8 | 吴兴亚, 高霄鹏. 基于操纵运动方程的水动力导数计算方法研究[J]. 舰船科学技术, 2017, 39(1): 26-31. |
Wu Xingya, Gao Xiaopeng. Research on Calculation Method of Hydrodynamic Derivatives Based on Maneuvering Equation[J]. Ship Science and Technology, 2017, 39(1): 26-31. | |
9 | 康伟, 褚建新, 黄辉, 等. 可回转双桨电力推进船舶运动模型的研究[J]. 中国造船, 2012, 53(1): 107-116. |
Kang Wei, Chu Jianxin, Huang Hui, et al. Study on Propulsion and Rotary Motion Model of the Rotatable Twin-propeller Electric Propulsion Ship[J]. Shipbuilding of China, 2012, 53(1): 107-116. | |
10 | 孙树蕾. 可回转双机双桨船模糊神经网络航向控制[D]. 大连: 大连海事大学, 2015. |
Sun Shulei. Fuzzy Neural Network Based Course Control of the Rotary Double-propeller Ship[D]. Dalian: Dalian Maritime University, 2015. | |
11 | 范云生, 王国峰, 赵永生. 无人水面艇运动建模与自主控制[M]. 大连: 大连海事大学出版社, 2020. |
12 | 贾欣乐, 杨盐生. 船舶运动数学模型: 机理建模与辨识建模[M]. 大连: 大连海事大学出版社, 1999. |
13 | 张国庆, 张显库. 船舶智能航行制导与控制[M]. 北京: 科学出版社, 2022. |
14 | 郭晨, 雷正玲. 海洋动力定位分层控制系统的建模与仿真研究[J]. 系统仿真学报, 2014, 26(5): 1118-1124. |
Guo Chen, Lei Zhengling. Study on Modeling and Simulation for Marine Dynamic Positioning Hierarchical Control System[J]. Journal of System Simulation, 2014, 26(5): 1118-1124. | |
15 | 张显库, 贾欣乐. 船舶运动控制[M]. 北京: 国防工业出版社, 2006. |
16 | NORRBIN N H. Theory and Observation on the Use of a Mathematical Model for Ship Manoeuvring in Deep and Confined Waters[C]//Proc 8th Symposium on Naval Hydrodynamics. Arlington: Office of Naval Research. |
17 | 杨盐生. 船舶阻力系数和推力系数计算的数据库方法[J]. 大连海事大学学报, 1995, 21(4): 14-17. |
Yang Yansheng. Calculating Ship Resistance and Thrust Coefficients Based on Database[J]. Journal of Dalian Maritime University, 1995, 21(4): 14-17. | |
18 | 李荣辉. 欠驱动水面船舶航迹自抗扰控制研究[D]. 大连: 大连海事大学, 2013. |
Li Ronghui. Active Disturbance Rejection Based Tracking Control of Underactuated Surface Ships[D]. Dalian: Dalian Maritime University, 2013. | |
19 | 张晨亮. 基于EFD和CFD的喷水推进船舶操纵运动建模研究[D]. 上海: 上海交通大学, 2022. |
Zhang Chenliang. Modeling of Maneuvering Motion for Waterjet Propulsion Ship Based on EFD-CFD Combined Method[D]. Shanghai: Shanghai Jiao Tong University, 2022. |
[1] | Zhang Zhenli, Wang Yongzhuang, Qin Yao, Yang Jie. Maglev Ball Control Algorithm Based on Levant Differentiator [J]. Journal of System Simulation, 2024, 36(7): 1586-1595. |
[2] | Zhang Wei, Jiang Yuefeng. Adaptive Particle Swarm Optimization Algorithm Based on Trap Label and Lazy Ant [J]. Journal of System Simulation, 2024, 36(7): 1631-1642. |
[3] | Fei Jiajie, Wu Dinghui, Fan Junyan, Wang Jing. Prediction of Converter Gas Generation Based on Intermission Production Improved Elman [J]. Journal of System Simulation, 2024, 36(5): 1179-1188. |
[4] | Zhang Kunpeng, Wang Yan, Ji Zhicheng. Intelligent Optimization Method of Cloud Manufacturing Swarm Based on Incomplete Information Game [J]. Journal of System Simulation, 2024, 36(4): 915-928. |
[5] | Xu Yuanxing, Zhang Mengjian, Wang Deguang. Chaotic-encode Quantum PSO Algorithm for Flexible Job-shop Scheduling Problem [J]. Journal of System Simulation, 2024, 36(10): 2371-2382. |
[6] | Gong Jianxing, Wang Zimu, Yang Qilong. Training Simulation Scenario Generation Based on Particle Swarm Optimization [J]. Journal of System Simulation, 2023, 35(9): 1860-1870. |
[7] | Menglong Cao, Wenbin Zhao, Zhiqiang Chen. Robot Path Planning by Fusing Particle Swarm Algorithm and Improved Grey Wolf Algorithm [J]. Journal of System Simulation, 2023, 35(8): 1768-1775. |
[8] | Xu Wang, Weidong Ji, Guohui Zhou. Fault Indicator Configuration Optimization Based on Cooperative Game Particle Swarm Algorithm [J]. Journal of System Simulation, 2023, 35(6): 1278-1289. |
[9] | Yan Bai, Lulu Wu, Yin'e He, Yuying Wang. Energy Consumption Prediction for Air-conditioning System Based on Dynamic Temperature Control [J]. Journal of System Simulation, 2022, 34(2): 366-375. |
[10] | Niu Kan, Li Bing, Fu Qiang. Method of Battlefield Frequency Allocation Based on Chaotic Perturbation Mechanism Particle Swarm Optimization Algorithm [J]. Journal of System Simulation, 2021, 33(8): 1905-1913. |
[11] | Wei Ruixuan, Wu Zichen. Study on Task Allocation of UAV Swarm Based on Cognitive Control [J]. Journal of System Simulation, 2021, 33(7): 1574-1581. |
[12] | Sun Yuzhen, Tang Yiwei, Li Shuai. Load System Modeling of Ultra-Supercritical Coal-Fired Power Unit Based on Improved Particle Swarm Optimization [J]. Journal of System Simulation, 2021, 33(4): 875-882. |
[13] | Shao Cheng, Sun Hongyuan, Zhang Lin. Simulation of Anti-ship Missile Automatic Control Section Trajectory Based on PSO-LSSVM [J]. Journal of System Simulation, 2021, 33(4): 918-926. |
[14] | Yin Zhishuai, He Jiaxiong, Nie Linzhen, Guan Jiayi. Longitudinal Adaptive Control of Autonomous Vehicles Base on Optimization Algorithm [J]. Journal of System Simulation, 2021, 33(2): 409-420. |
[15] | Yu Junqi, Jing Wenqiang, Zhao Anjun, Ren Yanhuan, Zhou Meng, Huang Xinle, Yang Xue. Cold Load Prediction Model Based on Improved PSO-BP Algorithm [J]. Journal of System Simulation, 2021, 33(1): 54-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||