[1] 袁世通. 1 000 MW超超临界机组建模理论与方法的研究[D]. 北京: 华北电力大学, 2015. Yuan Shitong.Research on Modeling Theory and Method of 1 000 MW Ultra Supercritical Unit[D]. Beijing: North China Electric Power University, 2015. [2] 孙海蓉, 王蕊, 耿军亚. 基于信息熵的BP网络在热工系统建模中的应用[J]. 系统仿真学报, 2017, 29(1): 226-233. Sun Hairong, Wang Rui, Geng Junya.Thermal System Modeling Based on Entropy and BP Neural Network[J]. Journal of System Simulation, 2017, 29(1): 226-233. [3] 黄宝海, 韩璞, 葛忠真, 等. 基于现场数据的电站过热器神经网络建模[J]. 华北电力大学学报(自然科学版), 2008, 35(2): 66-69. Huang Baohai, Han Pu, Ge Zhongzhen, et al.Modeling a Super-heater of Power Plant Based on Neural Network Using Field Data[J]. Journal of North China Electric Power University (Natural Science Edition), 2008, 35(2): 66-69. [4] 刘长良, 于希宁, 姚万业, 等. 基于遗传算法的火电厂热工过程模型辨识[J]. 中国电机工程学报, 2003, 23(3): 170-174. Liu Changliang, Yu Xining, Yao Wanye, et al.Identifi Cation of Thermal Process Model of Thermal Power Plant based on Genetic Algorithm[J]. Proceedings of the Chinese Society for Electrical Engineering, 2003, 23(3): 170-174. [5] 李擎, 张超. 一种基于粒子群参数优化的改进蚁群算法[J]. 控制与决策, 2013, 28(6): 873-883. Li Qing, Zhang Chao.An Improved Ant Colony Algorithm based on Particle Swarm Optimization[J]. Control and Decision, 2013, 28(6): 873-883. [6] 苟小龙, 张杰, 王家胜, 等. 基于粒子群算法的汽轮机及其调速系统参数辨识方法[J]. 系统仿真学报, 2014, 26(7): 1511-1516. Gou Xiaolong, Zhang Jie, Wang Jiasheng, et al.Parameter Identification Method of Steam Turbine and Its Speed Governor System Based on Particle Swarm Optimization[J]. Journal of System Simulation, 2014, 26(7): 1511-1516. [7] Shi Y H, Eberhart R.A Modifified Particle Swarm Optimizer[C]//Conference on Evolutionary Computation. Anchorage: IEEE, 1998: 69-73. [8] Kennedy J.Bare Bones Particle Swarms[C]//Swarm Intelligence Symposium. Indianapolis: IEEE, 2003: 80-87. [9] 康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学, 2015, 42(10): 226-231. Kang Lanlan, Dong Wenyong, Tian Jiangsen.A Reverse Learning Particle Swarm Optimization Algorithm based on Adaptive Cauchy Variation[J]. Computer Science, 2015, 42(10): 226-231. [10] 梁昔明, 龙文, 龙祖强, 等. 自适应梯度指导交叉的进化算法[J]. 小型微型计算机系统, 2011, 32(7): 1331-1335. Liang Ximing, Long Wen, Long Zuqiang, et al.Adaptive Gradient Guidance Crossover Evolutionary Algorithm[J]. Journal of Chinese Mini-Micro Computer Systems, 2011, 32(7): 1331-1335. [11] Gen M, Cheng R W.Geneticalgorithm and Engineering Design[M]. NewYork: JohnWiley, 1997: 379-381. [12] 常敬涛. 改进的最小二乘算法在热工对象模型辨识中的研究及应用[D]. 保定: 华北电力大学, 2010. Chang Jingtao.Research and Application of Improved Least Squares Algorithm in Thermal Object Model Identifification[D]. Baoding: North China Electric Power University, 2010. [13] 张微微, 张会生, 苏明. 混烧高炉煤气的火电机组热力系统建模与仿真分析[J]. 热力发电, 2012, 41(4): 59-64. Zhang Weiwei, Zhang Huisheng, Su Ming.Modeling and Simulation Analysis of Thermal System of Thermal Power Unit with Mixed Blast Furnace Gas[J]. Thermal Power Generation, 2012, 41(4): 59-64. [14] 韩璞, 袁世通. 基于大数据和双量子粒子群算法的多变量系统辨识[J]. 中国电机工程学报, 2014, 34(32): 5779-5787. Han Pu, Yuan Shitong.Multivariable System Identification Based on Double Quantum Particle Swarm Optimization and Big Data[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(32): 5779-5787. [15] 张法文. 热工过程控制系统分析、设计和调试[M]. 北京: 中国电力出版社, 1997. Zhang Fawen.Analysis, Design and Commissioning of Thermal Process Control Systems[M]. Beijing: Electric Power Press, 1997. |