[1] Gaining H, Weiping F, Wen W, et al.The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network[J]. Sensors (S1424-8220), 2017, 17(6): 1244. [2] 刘贺. 考虑驾驶员风格的汽车纵向控制策略研究[D]. 长沙: 湖南大学, 2018. Liu He.Research on Longitudinal Control Strategy of Automobile Considering Driver Style [D]. Changsha: Hunan University, 2018. [3] 陈天任. 车辆自动驾驶纵向控制策略研究[D]. 锦州: 辽宁工业大学, 2019. Chen Tianren.Research on Longitudinal Control Strategy of Vehicle Autopilot[D]. Jinzhou: Liaoning University of Technology, 2019. [4] 王浩. 基于横向与纵向综合控制的智能车辆运动控制研究[D]. 南京: 南京航空航天大学, 2016. Wang Hao.Research on Intelligent Vehicle Motion Control Based on Horizontal and Vertical Integrated Control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [5] Chien C C, Ioannou P, Lai M C.Entrainment and Vehicle Following Controllers Design for Autonomous Intelligent Vehicles[C]// 1994 American Control Conference. Baltimore, MD, USA: IEEE, 2002: 1-10. [6] Thanok S, Parnichkun M.Longitudinal Control of An Intelligent Vehicle Using Particle Swarm Optimization Based Sliding Mode Control[J]. Advanced Robotics (S0169-1864), 2015, 29(8): 525-543. [7] Wang Q, Qu T, Yu S Y, et al.Autonomous Vehicle Longitudinal Following Control Based on Model Predictive Control[C]// 2015 34th Chinese Control Conference. Hangzhou, China: IEEE, 2015: 8126-8131. [8] Attia R, Orjuela R, Basset M.Nonlinear Cascade Strategy for Longitudinal Control in Automated Vehicle Guidance[J]. Control Engineering Practice (S0967-0661), 2014, 29(6): 225-234. [9] Guo J, Luo Y, Li K, et al.Adaptive Dynamic Surface Longitudinal Tracking Control of Autonomous Vehicles[J]. IET Intelligent Transport Systems (S1751-956X), 2019, 13(8): 1272-1280. [10] 朱晓宏. 车辆自动驾驶纵向运动模糊神经控制研究[D]. 武汉: 武汉理工大学, 2003. Zhu Xiaohong.Research on Fuzzy Neural Control of Longitudinal Motion of Vehicle Autopilot[D]. Wuhan: Wuhan University of Technology, 2003. [11] Nie L Z, Guan J Y, Lu C H, et al.Longitudinal Speed Control of Autonomous Vehicle Based on a Self-Adaptive PID of Radial Basis Function Neural Network[J]. IET Intelligent Transport Systems (S1751-956X), 2018, 12(6): 485-494. [12] 周晶晶, 徐友春, 张自立, 等. IPSO-MPC算法在智能车纵向速度控制中的应用[J]. 军事交通学院学报, 2017, 19(4): 38-42. Zhou Jingjing, Xu Youchun, Zhang Zili, et al.Application of IPSO-MPC Algorithm in Longitudinal Speed Control of Smart Cars[J]. Journal of Military Transportation University, 2017, 19(4): 38-42. [13] Ye Y, Yin C B, Gong Y, et al.Position Control of Nonlinear Hydraulic System Using an Improved PSO Based PID Controller[J]. Mechanical Systems & Signal Processing (S0888-3270), 2017, 83: 241-259. [14] Zhang Y, Chen Q J.Prediction of Building Energy Consumption Based on PSO-RBF Neural Network[C]// 2014 IEEE International Conference on System Science and Engineering. Shanghai, China: IEEE, 2014: 60-63. [15] Yu M, Zou Z Y, Ren F J, et al.Application of adaptive PID based on RBF neural networks in temperature control[C]// 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014: 4302-4306. [16] Zhong Y C, Huang X, Meng P, et al.PSO-RBF Neural Network PID Control Algorithm of Electric Gas Pressure Regulator[J]. Abstract and Applied Analysis (S1085-3375), 2014(3): 1-7. [17] Sun X Y, Wei C, Zheng H Q, et al.A Method for Predicting Ultimate Bearing Capacity of Bolts Based on PSO-RBF Neural Network[C]. 2016 International Conference on Computational Intelligence and Applications. Jeju, South Korea: IEEE, 2016: 12-15. |