Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (12): 2575-2583.doi: 10.16182/j.issn1004731x.joss.22-FZ0925
• Modeling Theory and Methodology • Previous Articles Next Articles
Zhihao Zhu(
), Yan Wang(
), Zhicheng Ji
Received:2022-08-07
Revised:2022-09-09
Online:2022-12-31
Published:2022-12-21
Contact:
Yan Wang
E-mail:Zhuzhihaozzhyx@163.com;wangyan@jiangnan.edu.cn
CLC Number:
Zhihao Zhu, Yan Wang, Zhicheng Ji. Simulation Research on Appearance Detection of Ampoules Based on Lightweight Network and Model Compression[J]. Journal of System Simulation, 2022, 34(12): 2575-2583.
Table 3
Structure comparison before and after model compression
| Input | Operator | 压缩前参数量 | 压缩后参数量 | Output |
|---|---|---|---|---|
| 32×128×128 | Conv | 0.001 | 0.001 | 32×128×128 |
| 32×128×128 | BN | 0 | 0 | 32×128×128 |
| 32×128×128 | Bottleneck | 0.003 | 0.002 | 16×128×128 |
| 16×128×128 | Bottleneck Bottleneck | 0.006 0.009 | 0.003 0.004 | 24×128×128 |
| 24×128×128 | Bottleneck Bottleneck Bottleneck | 0.010 0.015 0.015 | 0.005 0.007 0.003 | 32×64×64 |
| 32×64×64 | Bottleneck | 0.021 | 0.004 | 64×32×32 |
| Bottleneck | 0.054 | 0.010 | ||
| Bottleneck | 0.054 | 0.010 | ||
| Bottleneck | 0.054 | 0.010 | ||
| 64×32×32 | Bottleneck | 0.073 | 0.018 | 96×32×32 |
| Bottleneck | 0.118 | 0.020 | ||
| Bottleneck | 0.118 | 0.007 | ||
| 96×32×32 | Bottleneck | 0.155 | 0.010 | 160×16×16 |
| Bottleneck | 0.320 | 0.019 | ||
| Bottleneck | 0.320 | 0.019 | ||
| 160×16×16 | Block | 0.526 | 0.080 | 320×16×16 |
| 320×16×16 | Conv | 0.410 | 0.410 | 1 280×16×16 |
| 1 280×16×16 | BN | 0.003 | 0.003 | 1 280×16×16 |
| 1 280×16×16 | Linear | 0.013 | 0.013 | 16×10 |
| 1 | 宛丽娟. 玻璃瑕疵在线检测关键技术研究及系统实现[D]. 秦皇岛: 燕山大学, 2017. |
| Wan Lijuan. Study on Key Technology and System Realization for detection of Glass Defects Online[D]. Qinhuangdao: Yanshan University, 2017. | |
| 2 | 杨宗芳. 基于机器视觉的西林瓶缺陷检测算法及系统研究[D]. 太原: 太原科技大学, 2016. |
| Yang Zongfang. Research on Algorithms and System of Vial Defects Detection Based on Machine Vision[D]. Taiyuan: Taiyuan University of Science and Technology, 2016. | |
| 3 | Zhou X, Wang Y, Zhu Q, et al. A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform[J]. IEEE Transactions on Industrial Informatics(S1551-3203), 2019, 16(4): 2189-2201. |
| 4 | 张文利, 陈开臻, 刘鈺昕, 等. 基于边缘设备的轻量化小目标果实检测模型[J]. 中国农业信息, 2021, 33(1): 28-36. |
| Zhang Wenli, Chen Kaizhen, Liu Yuxin, et al. Lightweight Small Target Fruit Detection Model Based on Edge Devices[J]. China Agricultural Informatics, 2021, 33(1): 28-36. | |
| 5 | 熊红林, 樊重俊, 赵珊, 等. 基于多尺度卷积神经网络的玻璃表面缺陷检测方法[J]. 计算机集成制造系统, 2020, 26(4): 900-909. |
| Xiong Honglin, Fan Chongjun, Zhao Shan, et al. Glass Surface Defect Detection Method Based on Multiscale Convolution Neural Network[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 900-909. | |
| 6 | 陈宏彩, 任亚恒, 郝存明, 等. 基于YOLOv3的医药玻璃瓶缺陷检测方法[J]. 包装工程, 2020, 41(7): 241-246. |
| Chen Hongcai, Ren Yaheng, Hao Cunming, et al. Defect Detection Method for Medical Glass Bottles Based on YOLOv3[J]. Packaging Engineering, 2020, 41(7): 241-246. | |
| 7 | 李康. 结合对抗自编码器与LBP编码的安瓿瓶外观缺陷检测[D]. 石家庄: 河北师范大学, 2021. |
| Li Kang. Ampoule Bottle Appearance Defect Detection Based on Adversarial Auto-encoder and LBP Coding[D]. Shijiazhuang: Hebei Normal University, 2021. | |
| 8 | Jin D, Xu S, Tong L, et al. End Image Defect Detection of Float Glass Based on Faster Region-Based Convolutional Neural Network[J]. Traitement Du Signal, 2020, 37(5): 807-813. |
| 9 | 杨国威, 许志旺, 房臣, 等. 融合剪枝与量化的目标检测网络压缩方法[J/OL]. 计算机工程与应用 [2022-02-14]. . |
| 008 | html. Yang Guowei, Xu Zhiwang, Fang Chen, et al. Object Detection Network Compression Method Based on Pruning and Quantization[J/OL]. Computer Engineering and Applications [2022-02-14]. . |
| 10 | Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031 . |
| 11 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[J/OL]. arXiv preprint arXiv:1409.1556 [2022-02-12]. . |
| 12 | Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]// Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA: IEEE, 2018: 4510-4520. |
| 13 | Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J/OL]. Computer Vision and Pattern Recognition[2022-02-12]. . |
| 14 | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778. |
| 15 | He Y, Zhang X, Sun J. Channel Pruning for Accelerating Very Deep Neural Networks[C]// IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 1398-1406. |
| 16 | Ding X, Hao T, Tan J, et al. Resrep: Lossless Cnn Pruning via Decoupling Remembering and Forgetting[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 4510-4520. |
| 17 | Ding X, Zhang X, Ma N, et al. Repvgg: Making Vgg-Style Convnets Great Again[C]// Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 13728-13737. |
| 18 | Wu J, Leng C, Wang Y, et al. Quantized Convolutional Neural Networks for Mobile Devices[C]//Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 4820-4828. |
| 19 | Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[J/OL]. arXiv preprint arXiv:1503. 02531, 2015, 2(7)[2022-02-12]. . |
| [1] | Li Mingyu, Lin Jiaquan. Lightweight Driver Face Object Detection Algorithm Based on YOLOv8-DF [J]. Journal of System Simulation, 2025, 37(8): 2103-2114. |
| [2] | Feng Zhiyuan, Chen Ying. Self-supervised Defect Detection via Discriminative Enhancement-based Distillation Learning [J]. Journal of System Simulation, 2025, 37(6): 1499-1511. |
| [3] | Yang Lu, Pei Junying. Aerial Target Detection Algorithm Fused with Multi-scale Features [J]. Journal of System Simulation, 2025, 37(6): 1486-1498. |
| [4] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
| [5] | Wu Shuheng, Liu Yongkui, Zhang Lin, Xiao Yingying, Wang Lihui. Lightweight Assembly Workpiece Detection Algorithm Based on Improved YOLOv8 [J]. Journal of System Simulation, 2025, 37(12): 3099-3111. |
| [6] | Zhou Congling, Wang Chunpeng, Xie Qiwei, Wang Yongqiang, Shen Lijun. Parking Space Reasoning Model for Complex Scenarios [J]. Journal of System Simulation, 2025, 37(11): 2724-2740. |
| [7] | Shi Lanxi, Yan Wenxu, Ni Hongyu, Zhao Feng. Research on Dynamic Scene SLAM Based on Improved Object Detection [J]. Journal of System Simulation, 2024, 36(4): 1028-1042. |
| [8] | Lu Bin, Wang Minghan, Sun Yang, Yang Zhenyu. Global-local Fusion for Efficient 3D Object Detection [J]. Journal of System Simulation, 2024, 36(11): 2616-2630. |
| [9] | Wang Gaihua, Li Kehong, Long Qian, Yao Jingxuan, Zhu Bolun, Zhou Zhengshu, Pan Xuran. Object Detection of Lightweight Transformer Based on Knowledge Distillation [J]. Journal of System Simulation, 2024, 36(11): 2517-2527. |
| [10] | Su Tong, Wang Ying, Deng Qiyang, Li Zhaobin. Improved Foggy Pedestrian and Vehicle Detection Algorithm Based on YOLOv5 [J]. Journal of System Simulation, 2024, 36(10): 2413-2422. |
| [11] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
| [12] | Dong Qingqing, Wu Hao, Qian Wenhua, Kong Fengling. RGB-D Saliency Object Detection Based on Cross-refinement and Circular Attention [J]. Journal of System Simulation, 2023, 35(9): 1931-1947. |
| [13] | Xu Renjie, Zhang Xiaoming, Wang Chen, Wu Peng. Research on 3D Object Detection Method with Cross-module Attention [J]. Journal of System Simulation, 2023, 35(12): 2680-2691. |
| [14] | Shiqi Lin, Jikai Wang, Haoyuan Pei, Hao Zhao, Zonghai Chen. Monocular Semantic SLAM Method Based on Object Relation Description [J]. Journal of System Simulation, 2022, 34(2): 278-284. |
| [15] | Lu Yuqiu, Sun Jinyu, Ma Shiwei. Moving Object Detection Based on Deep Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2275-2280. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||