Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (8): 2103-2114.doi: 10.16182/j.issn1004731x.joss.24-0320
• Papers • Previous Articles
Li Mingyu, Lin Jiaquan
Received:
2024-04-01
Revised:
2024-05-06
Online:
2025-08-20
Published:
2025-08-26
Contact:
Lin Jiaquan
CLC Number:
Li Mingyu, Lin Jiaquan. Lightweight Driver Face Object Detection Algorithm Based on YOLOv8-DF[J]. Journal of System Simulation, 2025, 37(8): 2103-2114.
[1] | Amodio Alessandro, Ermidoro Michele, Maggi D, et al. Automatic Detection of Driver Impairment Based on Pupillary Light Reflex[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3038-3048. |
[2] | 邱轶辉, 江琼, 魏玲玲, 等. 基于迁移学习的跨被试脑电疲劳驾驶检测[J]. 南昌大学学报(理科版), 2023, 47(4): 397-402. |
Qiu Yihui, Jiang Qiong, Wei Lingling, et al. Transfer Learning-based Cross-subject EEG Fatigue Driving Detection[J]. Journal of Nanchang University(Natural Science), 2023, 47(4): 397-402. | |
[3] | Guo Zizheng, Wang Guanglei, Zhou Ming, et al. Monitoring and Detection of Driver Fatigue from Monocular Cameras Based on Yolov5[C]//2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI). Piscataway: IEEE, 2022: 1-6. |
[4] | Sikander Gulbadan, Anwar Shahzad. Driver Fatigue Detection Systems: A Review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2339-2352. |
[5] | 李小平, 白超. 一种基于多模态信息融合的火车司机疲劳驾驶检测方法[J]. 铁道学报, 2022, 44(6): 56-65. |
Li Xiaoping, Bai Chao. A Train Driver Fatigue Driving Detection Method Based on Multi-modal Information Fusion[J]. Journal of the China Railway Society, 2022, 44(6): 56-65. | |
[6] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[7] | Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Piscataway: IEEE, 2001: I-511-I-518. |
[8] | Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Piscataway: IEEE, 2005: 886-893. |
[9] | Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-based Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. |
[10] | Agrawal P, Girshick R, Malik J. Analyzing the Performance of Multilayer Neural Networks for Object Recognition[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 329-344. |
[11] | Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 1440-1448. |
[12] | Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
[13] | Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788. |
[14] | Liu Wei, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[C]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[15] | Carion N, Massa F, Synnaeve G, et al. End-to-end Object Detection with Transformers[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229. |
[16] | Li Kening, Gong Yunbo, Ren Ziliang. A Fatigue Driving Detection Algorithm Based on Facial Multi-feature Fusion[J]. IEEE Access, 2020, 8: 101244-101259. |
[17] | Niu Chengwen, Song Yunsheng, Zhao Xinyue. SE-lightweight YOLO: Higher Accuracy in YOLO Detection for Vehicle Inspection[J]. Applied Sciences, 2023, 13(24): 13052. |
[18] | 苏彤, 王颖, 邓启扬, 等. 基于YOLOv5改进的雾天行人与车辆检测算法[J]. 系统仿真学报, 2024, 36(10): 2413-2422. |
Su Tong, Wang Ying, Deng Qiyang, et al. Improved Foggy Pedestrian and Vehicle Detection Algorithm Based on YOLOv5[J]. Journal of System Simulation, 2024, 36(10): 2413-2422. | |
[19] | 王银, 王飞翔, 孙前来. 多尺度特征融合车辆检测方法[J]. 系统仿真学报, 2022, 34(6): 1219-1229. |
Wang Yin, Wang Feixiang, Sun Qianlai. Vehicle Detection Method Based on Multi Scale Feature Fusion[J]. Journal of System Simulation, 2022, 34(6): 1219-1229. | |
[20] | Chen Leiyu, Li Shaobo, Bai Qiang, et al. Review of Image Classification Algorithms Based on Convolutional Neural Networks[J]. Remote Sensing, 2021, 13(22): 4712. |
[21] | Sun Zhaoyun, Zhai Junzhi, Pei Lili, et al. Automatic Pavement Crack Detection Transformer Based on Convolutional and Sequential Feature Fusion[J]. Sensors, 2023, 23(7): 3772. |
[22] | 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109. |
Fu Jinyi, Zhang Zijia, Sun Wei, et al. Improved YOLOv8 Small Target Detection Algorithm in Aerial Images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109. | |
[23] | 郭业才, 孙京东, Saha Amitave. 基于YOLOv5改进的航拍图像目标检测算法[J]. 系统仿真学报, 2025, 37(2): 551-562. |
Guo Yecai, Sun Jingdong, Saha Amitave. Improved Target Detection Algorithm for Aerial Images Based on YOLOv5[J]. Journal of System Simulation, 2025, 37(2): 551-562. | |
[24] | Chen Long, Ding Qiwei, Zou Qin, et al. DenseLightNet: A Light-weight Vehicle Detection Network for Autonomous Driving[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10600-10609. |
[25] | Chen Jierun, Kao S H, He Hao, et al. Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 12021-12031. |
[26] | Wang Jian, Zhang Fei, Zhang Yuesong, et al. Lightweight Object Detection Algorithm for UAV Aerial Imagery[J]. Sensors, 2023, 23(13): 5786. |
[27] | Han Kai, Wang Yunhe, Tian Qi, et al. GhostNet: More Features from Cheap Operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 1577-1586. |
[28] | Alansari Mohamad, Oussama Abdul Hay, Javed Sajid, et al. GhostFaceNets: Lightweight Face Recognition Model from Cheap Operations[J]. IEEE Access, 2023, 11: 35429-35446. |
[29] | Zhang Zicheng, Xu Hongke, Lin Shan. Quantizing YOLOv5 for Real-time Vehicle Detection[J]. IEEE Access, 2023, 11: 145601-145611. |
[30] | 许晓阳, 高重阳. 改进YOLOv7-tiny的轻量级红外车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 74-83. |
Xu Xiaoyang, Gao Chongyang. Improved YOLOv7-tiny Lightweight Infrared Vehicle Target Detection Algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 74-83. | |
[31] | Lin T, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740-755. |
[32] | Zhao Yian, Wenyu Lü, Xu Shangliang, et al. DETRs Beat YOLOs on Real-time Object Detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2024: 16965-16974. |
[33] | Li Hulin, Li Jun, Wei Hanbing, et al. Slim-neck by GSConv: A Better Design Paradigm of Detector Architectures for Autonomous Vehicles[EB/OL]. (2022-06-06) [2024-03-24]. . |
[34] | Ma Ningning, Zhang Xiangyu, Zheng Haitao, et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 122-138. |
[1] | Yang Lu, Pei Junying. Aerial Target Detection Algorithm Fused with Multi-scale Features [J]. Journal of System Simulation, 2025, 37(6): 1486-1498. |
[2] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
[3] | Shi Lanxi, Yan Wenxu, Ni Hongyu, Zhao Feng. Research on Dynamic Scene SLAM Based on Improved Object Detection [J]. Journal of System Simulation, 2024, 36(4): 1028-1042. |
[4] | Zhang Xiliu, Zhang Xiaoling, He Minjun. Research on Vehicle Detection Method Based on Improved YOLOX-s [J]. Journal of System Simulation, 2024, 36(2): 487-496. |
[5] | Lu Bin, Wang Minghan, Sun Yang, Yang Zhenyu. Global-local Fusion for Efficient 3D Object Detection [J]. Journal of System Simulation, 2024, 36(11): 2616-2630. |
[6] | Wang Gaihua, Li Kehong, Long Qian, Yao Jingxuan, Zhu Bolun, Zhou Zhengshu, Pan Xuran. Object Detection of Lightweight Transformer Based on Knowledge Distillation [J]. Journal of System Simulation, 2024, 36(11): 2517-2527. |
[7] | Su Tong, Wang Ying, Deng Qiyang, Li Zhaobin. Improved Foggy Pedestrian and Vehicle Detection Algorithm Based on YOLOv5 [J]. Journal of System Simulation, 2024, 36(10): 2413-2422. |
[8] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
[9] | Dong Qingqing, Wu Hao, Qian Wenhua, Kong Fengling. RGB-D Saliency Object Detection Based on Cross-refinement and Circular Attention [J]. Journal of System Simulation, 2023, 35(9): 1931-1947. |
[10] | Xu Renjie, Zhang Xiaoming, Wang Chen, Wu Peng. Research on 3D Object Detection Method with Cross-module Attention [J]. Journal of System Simulation, 2023, 35(12): 2680-2691. |
[11] | Shiqi Lin, Jikai Wang, Haoyuan Pei, Hao Zhao, Zonghai Chen. Monocular Semantic SLAM Method Based on Object Relation Description [J]. Journal of System Simulation, 2022, 34(2): 278-284. |
[12] | Xinghua Luo, Jia Geng, Ming Li, Bei Liu, Lei Wang, Zhiping Song. Research on Iterative Calculation and Optimization Methods of Aero-engine On-board Model [J]. Journal of System Simulation, 2022, 34(12): 2649-2658. |
[13] | Zhihao Zhu, Yan Wang, Zhicheng Ji. Simulation Research on Appearance Detection of Ampoules Based on Lightweight Network and Model Compression [J]. Journal of System Simulation, 2022, 34(12): 2575-2583. |
[14] | Lu Yuqiu, Sun Jinyu, Ma Shiwei. Moving Object Detection Based on Deep Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2275-2280. |
[15] | Zhang Yunyin, Liu Chunguang, Ma Xiaojun, Liao Zili. Real-time Simulation Research on Electric Drive System of Armored Vehicle [J]. Journal of System Simulation, 2017, 29(1): 107-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||