Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (6): 1499-1511.doi: 10.16182/j.issn1004731x.joss.24-0206
• Papers • Previous Articles
Feng Zhiyuan, Chen Ying
Received:
2024-03-07
Revised:
2024-05-17
Online:
2025-06-20
Published:
2025-06-18
Contact:
Chen Ying
CLC Number:
Feng Zhiyuan, Chen Ying. Self-supervised Defect Detection via Discriminative Enhancement-based Distillation Learning[J]. Journal of System Simulation, 2025, 37(6): 1499-1511.
Table 1
DET-AUROC of different methods
类别 | US | MKD | PaDiM | EdgRec | DRAEM | RD | DRAD | STPM | 本文 | |
---|---|---|---|---|---|---|---|---|---|---|
纹理类 | 地毯 | 91.6 | 79.3 | 99.8 | 97.4 | 97.0 | 98.9 | 99.3 | — | 99.8 |
网格 | 81.0 | 78.0 | 96.7 | 99.7 | 99.9 | 100 | 99.9 | — | 100 | |
皮革 | 88.2 | 95.1 | 100 | 100 | 100 | 100 | 99.9 | — | 100 | |
瓷砖 | 99.1 | 91.6 | 98.1 | 100 | 99.6 | 99.3 | 99.2 | — | 100 | |
木材 | 97.7 | 94.3 | 99.2 | 94.0 | 99.1 | 99.2 | 99.6 | — | 99.7 | |
对象类 | 瓶底 | 99.0 | 99.4 | 99.9 | 100 | 99.2 | 100 | 100 | — | 100 |
电缆 | 86.2 | 89.2 | 92.7 | 97.9 | 91.8 | 95.0 | 98.6 | — | 98.2 | |
胶囊 | 86.1 | 80.5 | 91.3 | 95.5 | 98.5 | 96.3 | 98.1 | — | 97.6 | |
榛子 | 93.1 | 98.4 | 92.0 | 98.4 | 100 | 99.9 | 100 | — | 100 | |
齿轮 | 82.0 | 73.6 | 98.7 | 97.3 | 98.7 | 100 | 99.6 | — | 100 | |
药片 | 87.9 | 82.7 | 93.3 | 99.0 | 98.9 | 96.6 | 96.8 | — | 99.1 | |
螺钉 | 54.9 | 83.3 | 85.8 | 89.9 | 93.9 | 97.0 | 97.6 | — | 98.4 | |
牙刷 | 95.3 | 92.2 | 96.1 | 100 | 100 | 99.5 | 97.2 | — | 99.4 | |
晶体管 | 81.8 | 85.6 | 97.4 | 99.8 | 93.1 | 96.7 | 98.9 | — | 98.2 | |
拉链 | 91.9 | 93.2 | 90.3 | 98.3 | 100 | 98.5 | 98.8 | — | 98.1 | |
平均值 | 87.7 | 87.8 | 95.5 | 97.8 | 98.0 | 98.5 | 98.9 | 95.5 | 99.2 |
Table 2
SEG-AUROC and PRO-AUROC of different methods
类别 | US | MKD | EdgRec | DRAEM | PaDiM | DRAD | RD | STPM | 本文 | |
---|---|---|---|---|---|---|---|---|---|---|
纹理类 | 地毯 | —/87.9 | 95.6/— | 99.4/96.9 | 95.5/— | 99.1/96.2 | 98.7/— | 98.9/97.0 | 98.8/95.8 | 99.5/98.0 |
网格 | —/95.2 | 91.8/— | 99.2/97.0 | 99.7/— | 97.3/94.6 | 98.9/— | 99.3/97.6 | 99.0/96.6 | 99.2/96.9 | |
皮革 | —/94.5 | 98.1/— | 99.7/98.8 | 98.6/— | 99.2/97.8 | 99.1/— | 99.4/99.1 | 99.3/98.0 | 99.8/99.4 | |
瓷砖 | —/94.6 | 82.8/— | 98.6/96.3 | 99.2/— | 94.1/86.0 | 95.2/— | 95.6/90.6 | 97.4/92.1 | 98.4/96.1 | |
木材 | —/91.1 | 84.8/— | 91.4/77.5 | 96.4/— | 94.9/91.1 | 94.9/— | 95.3/90.9 | 97.2/93.6 | 97.2/94.7 | |
对象类 | 瓶底 | —/93.1 | 96.3/— | 98.3/94.3 | 99.1/— | 98.3/94.8 | 98.6/— | 98.7/96.6 | 98.8/95.1 | 99.3/97.4 |
电缆 | —/81.8 | 82.4/— | 97.7/88.7 | 94.7/— | 96.7/88.8 | 96.9/— | 97.4/91.0 | 95.5/87.7 | 96.6/90.5 | |
胶囊 | —/96.8 | 95.9/— | 95.2/82.2 | 94.3/— | 98.5/93.5 | 98.9/— | 98.7/95.8 | 98.3/92.2 | 98.7/95.8 | |
榛子 | —/96.5 | 94.6/— | 99.4/95.4 | 99.7/— | 98.2/92.6 | 98.9/— | 98.9/95.5 | 98.5/94.3 | 99.4/96.5 | |
齿轮 | —/94.2 | 86.4/— | 98.0/91.2 | 99.5/— | 97.2/85.6 | 98.5/— | 97.3/92.3 | 97.6/94.5 | 97.6/92.8 | |
药片 | —/96.1 | 89.6/— | 98.7/96.1 | 97.6/— | 95.7/82.7 | 99.1/— | 98.2/96.4 | 97.8/96.5 | 99.3/97.9 | |
螺钉 | —/94.2 | 96.0/— | 97.7/89.3 | 97.6/— | 98.5/94.4 | 99.2/— | 99.6/98.2 | 98.3/93.0 | 99.6/98.2 | |
牙刷 | —/93.3 | 96.1/— | 99.2/94.9 | 98.1/— | 98.8/93.1 | 98.8/— | 99.1/94.5 | 98.9/92.2 | 99.0/93.7 | |
晶体管 | —/66.6 | 76.5/— | 94.3/87.7 | 90.9/— | 97.5/84.5 | 91.4/— | 92.5/78.0 | 82.5/69.5 | 92.5/73.5 | |
拉链 | —/95.1 | 93.9/— | 98.7/96.0 | 98.8/— | 98.5/95.9 | 98.5/— | 98.2/95.4 | 98.5/95.2 | 99.0/95.9 | |
平均值 | —/91.4 | 90.7/— | 97.7/92.1 | 97.3/— | 97.5/92.1 | 97.7/— | 97.8/93.9 | 97.0/92.1 | 98.3/94.5 |
1 | Roth Karsten, Pemula L, Zepeda J, et al. Towards Total Recall in Industrial Anomaly Detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 14298-14308. |
2 | 于豪, 蒋锦霞, 赖晓翰, 等. 基于自适应感受野的电力设备表面缺陷检测方法[J]. 系统仿真学报, 2023, 35(7): 1572-1580. |
Yu Hao, Jiang Jinxia, Lai Xiaohan, et al. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network[J]. Journal of System Simulation, 2023, 35(7): 1572-1580. | |
3 | Zavrtanik Vitjan, Kristan Matej, Skočaj Danijel. DRÆM-a Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 8310-8319. |
4 | Schlegl T, Seeböck Philipp, Waldstein S M, et al. f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks[J]. Medical Image Analysis, 2019, 54: 30-44. |
5 | Watanabe Haruna, Ren Togo, Ogawa Takahiro, et al. Bone Metastatic Tumor Detection Based on AnoGAN Using CT Images[C]//2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech). Piscataway: IEEE, 2019: 235-236. |
6 | 王可, 张辉, 曹意宏, 等. 面向医药生产的智能机器人及其关键技术研究综述[J]. 计算机集成制造系统, 2022, 28(7): 1981-1995. |
Wang Ke, Zhang Hui, Cao Yihong, et al. Intelligent Robots and Key Technologies for Pharmaceutical Production[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1981-1995. | |
7 | Liu Y, Li C L, Póczos B. Classifier Two Sample Test for Video Anomaly Detections[C]//BMVC. Newcastle: BMVA, 2018: 71. |
8 | Pang Guansong, Yan Cheng, Shen Chunhua, et al. Self-trained Deep Ordinal Regression for End-to-end Video Anomaly Detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 12170-12179. |
9 | Bogdoll Daniel, Nitsche Maximilian, Marius Zöllner J. Anomaly Detection in Autonomous Driving: A Survey[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2022: 4487-4498. |
10 | Vojir Tomas, Šipka Tomáš, Aljundi Rahaf, et al. Road Anomaly Detection by Partial Image Reconstruction with Segmentation Coupling[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 15631-15640. |
11 | Defard Thomas, Setkov Aleksandr, Loesch Angelique, et al. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization[C]//Pattern Recognition. ICPR International Workshops and Challenges. Cham: Springer International Publishing, 2021: 475-489. |
12 | Cohen Niv, Hoshen Yedid. Sub-image Anomaly Detection with Deep Pyramid Correspondences[EB/OL]. (2021-02-03) [2023-04-20]. . |
13 | Kingma Diederik P, Welling Max. Auto-encoding Variational Bayes[EB/OL]. (2022-12-10) [2023-04-20]. . |
14 | Goodfellow I, Pouget-Abadie Jean, Mirza Mehdi, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
15 | 戴俊, 王俊, 朱忠奎, 等. 基于生成对抗网络和自动编码器的机械系统异常检测[J]. 仪器仪表学报, 2019, 40(9): 16-26. |
Dai Jun, Wang Jun, Zhu Zhongkui, et al. Anomaly Detection of Mechanical Systems Based on Generative Adversarial Network and Auto-encoder[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 16-26. | |
16 | Schlegl T, Seeböck Philipp, Waldstein S M, et al. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[C]//Information Processing in Medical Imaging. Cham: Springer International Publishing, 2017: 146-157. |
17 | Li Chunliang, Sohn K, Yoon J, et al. CutPaste: Self-supervised Learning for Anomaly Detection and Localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 9659-9669. |
18 | Tsai M C, Wang Shengde. Self-supervised Image Anomaly Detection and Localization with Synthetic Anomalies[C]//2023 10th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). Piscataway: IEEE, 2023: 90-95. |
19 | Bergmann Paul, Fauser Michael, Sattlegger David, et al. Uninformed Students: Student-teacher Anomaly Detection with Discriminative Latent Embeddings[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 4182-4191. |
20 | Salehi Mohammadreza, Sadjadi Niousha, Baselizadeh Soroosh, et al. Multiresolution Knowledge Distillation for Anomaly Detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 14897-14907. |
21 | Wang Guodong, Han Shumin, Ding Errui, et al. Student-teacher Feature Pyramid Matching for Anomaly Detection[EB/OL]. (2021-10-28) [2023-04-20]. . |
22 | Bergmann Paul, Fauser Michael, Sattlegger David, et al. MVTec AD-a Comprehensive Real-world Dataset for Unsupervised Anomaly Detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 9584-9592. |
23 | Deng Hanqiu, Li Xingyu. Anomaly Detection via Reverse Distillation from One-class Embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 9727-9736. |
24 | Luo Jiaxiang, Zhang Jianzhao. A Method for Image Anomaly Detection Based on Distillation and Reconstruction[J]. Sensors, 2023, 23(22): 9281. |
25 | Liu Tongkun, Li Bing, Zhao Zhuo, et al. Reconstruction from Edge Image Combined with Color and Gradient Difference for Industrial Surface Anomaly Detection[EB/OL]. (2022-10-26) [2023-04-20]. . |
[1] | Wang Gaihua, Li Kehong, Long Qian, Yao Jingxuan, Zhu Bolun, Zhou Zhengshu, Pan Xuran. Object Detection of Lightweight Transformer Based on Knowledge Distillation [J]. Journal of System Simulation, 2024, 36(11): 2517-2527. |
[2] | Hao Yu, Jinxia Jiang, Xiaohan Lai, Feng Mei, Qing Wang. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network [J]. Journal of System Simulation, 2023, 35(7): 1572-1580. |
[3] | Bingan Yuan, Mingen Zhong, Jingxin Ni. Research on Visual Inspection Algorithm of Crimping Appearance Defects for Wiring Harness Terminals [J]. Journal of System Simulation, 2022, 34(5): 1152-1159. |
[4] | Zhihao Zhu, Yan Wang, Zhicheng Ji. Simulation Research on Appearance Detection of Ampoules Based on Lightweight Network and Model Compression [J]. Journal of System Simulation, 2022, 34(12): 2575-2583. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||