Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (2): 191-200.doi: 10.16182/j.issn1004731x.joss.21-0263
• Invited Papers & Special Columns • Previous Articles Next Articles
Xiaohan Wang1,2(), Lin Zhang1,2(), Yuanjun Laili1,2, Kunyu Xie1,2, Tingchun Hu1
Received:
2021-03-29
Revised:
2021-04-01
Online:
2022-02-18
Published:
2022-02-23
Contact:
Lin Zhang
E-mail:by1903042@buaa.edu.cn;johnlin9999@163.com
CLC Number:
Xiaohan Wang, Lin Zhang, Yuanjun Laili, Kunyu Xie, Tingchun Hu. Constructing the Agent Discrete Simulation Based on DEVS Atomic Model[J]. Journal of System Simulation, 2022, 34(2): 191-200.
1 | Xie J, Liu C C. Multi-agent Systems and their Applications[J]. Journal of International Council on Electrical Engineering(S2234-8972), 2017, 7(1): 188-197. |
2 | Van Tendeloo Y, Vangheluwe H. Extending the DEVS Formalism with Initialization Information[J]. arXiv preprint arXiv:, 2018. |
3 | Seo C, Zeigler B P, Kim D. DEVS Markov Modeling and Simulation: Formal Definition and Implementation[C]//Proceedings of the 4th ACM International Conference of Computing for Engineering and Sciences, 2018: 1-12. |
4 | Bae J W, Lee G H, Moon I C. Formal Specification Supporting Incremental and Flexible Agent-based Modeling[C]//Proceedings of the 2012 Winter Simulation Conference (WSC). IEEE, 2012: 1-12. |
5 | Müller J P. Towards a Formal Semantics of Event-based Multi-agent Simulations[C]//International Workshop on Multi-Agent Systems and Agent-Based Simulation. Springer, Berlin, Heidelberg, 2008: 110-126. |
6 | Barbieri E, Capocchi L, Santucci J F. DEVS Modeling and Simulation of Financial Leverage Effect Based on Markov Decision Process[C]//2018 4th International Conference on Universal Village (UV). IEEE, 2018: 1-5. |
7 | Capocchi L, Santucci J F, Zeigler B P. Discrete Event Modeling and Simulation Aspects to Improve Machine Learning Systems[C]//2018 4th International Conference on Universal Village (UV). IEEE, 2018: 1-6. |
8 | Kessler C, Capocchi L, Santucci J F, et al. Hierarchical Markov Decision Process based on DEVS Formalism[C]//2017 Winter Simulation Conference (WSC). IEEE, 2017: 1001-1012. |
9 | Zhang M. Constructing a Cognitive Agent Model using DEVS Framework for Multi-agent Simulation[C]// Proc. 15th Eur. Agent Syst. Summer School (EASSS), 2013: 1-5. |
10 | Akplogan M, Quesnel G, Garcia F, et al. Towards a Deliberative Agent System based on DEVS Formalism for Application in Agriculture[C]//Proceedings of the 2010 Summer Computer Simulation Conference. 2010: 250-257. |
11 | Chow A C H, Zeigler B P. Parallel DEVS: A Parallel, Hierarchical, Modular Modeling Formalism[C]//Proceedings of Winter Simulation Conference. IEEE, 1994: 716-722. |
12 | 孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题[J]. 自动化学报, 2020, 45: 1-12. |
Sun Changyin, Mu Chaoxu. Important Scientific Problems of Multi-agent deep Reinforcement Learning[J]. Acta Automatica Sinica, 2020, 45: 1-12. | |
13 | Haarnoja T, Zhou A, Abbeel P, et al. Soft Actor-critic: Off-policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor[C]//International Conference on Machine Learning. PMLR, 2018: 1861-1870. |
14 | 张红旗, 杨峻楠, 张传富. 基于不完全信息随机博弈与 Q-learning 的防御决策方法[J]. 通信学报, 2018, 39(8): 56-68. |
Zhang Hongqi, Yang Junnan, Zhang Chuanfu. Defense Decision-making Method based on Incomplete Information Stochastic Game and Q-learning[J]. Journal on Communications, 2018, 39(8): 56-68. | |
15 | 蒲玮, 李雄. 基于扩展 FIPA-ACL 的装备保障 Agent 通信语言[J]. 系统工程理论与实践, 2018, 38(1): 220-228. |
Pu Wei, Li Xiong. Equipment Support Agent Communication Language based on Extended FIPA-ACL[J]. System Engineering Theory&Practice, 2018, 38(1): 220-228. | |
16 | 梁凯, 陈志军, 闫学勤. 移动机器人路径规划仿真研究[J]. 现代电子技术, 2018, 41(17): 6. |
Liang Kai, Chen Zhijun, Yan Xueqin. Simulation Study on Effective Path Planning for Mobile Robot[J]. Modern Electronics Technique, 2018, 41(17): 6. | |
17 | 陈建平, 邹锋, 刘全, 等. 一种基于生成对抗网络的强化学习算法[J]. 计算机科学, 2019, 46(10): 265-272. |
Chen Jianping, Zou Feng, Liu Quan, etc. Reinforcement Learning Algorithm Based on Generative Adversarial Networks[J]. Computer Science, ,2019, 46(10): 265-272. | |
18 | Van Tendeloo Y, Vangheluwe H. The Modular Architecture of the Python (P) DEVS Simulation Kernel[C]//Proceedings of the 2014 Symposium on Theory of Modeling and Simulation-DEVS. 2014: 387-392. |
19 | Sutton R S, Barto A G. Reinforcement Learning: An Introduction[J]. IEEE Transactions on Neural Networks(S1045-9227), 1998, 9(5): 1054. |
[1] | Junren Luo, Wanpeng Zhang, Weilin Yuan, Zhenzhen Hu, Shaofei Chen, Jing Chen. Research on Opponent Modeling Framework for Multi-agent Game Confrontation [J]. Journal of System Simulation, 2022, 34(9): 1941-1955. |
[2] | Qimiao Xie, Shuaishuai Guo. Research on Passenger Ship Evacuation Simulation Based on Social Force Model [J]. Journal of System Simulation, 2022, 34(8): 1710-1724. |
[3] | Miaojia Lu, Chengyuan Huang, Jing Teng. Multi-agent Simulation for Online Fresh Food Autonomous Delivery [J]. Journal of System Simulation, 2022, 34(6): 1185-1195. |
[4] | Yejian Zhao, Yanhong Wang, Jun Zhang, Hongxia Yu, Zhongda Tian. Application of Improved Q Learning Algorithm in Job Shop Scheduling Problem [J]. Journal of System Simulation, 2022, 34(6): 1247-1258. |
[5] | Sen Zhang, Mengyan Zhang, Jingping Shao, Jiexin Pu. Multi-UAVs 3D Path Planning Method Based on Random Strategy Search [J]. Journal of System Simulation, 2022, 34(6): 1286-1295. |
[6] | Lingjia Ni, Xiaoxia Huang, Hongga Li, Zibo Zhang. Research on Fire Emergency Evacuation Simulation Based on Cooperative Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(6): 1353-1366. |
[7] | Xin Zhou, Weiping Wang, Yifan Zhu, Tao Wang, Tian Jing. An Unmanned Swarm Search Method Based on Human-Robot Cooperation [J]. Journal of System Simulation, 2022, 34(4): 735-744. |
[8] | Hongwei Wang, Peng Yang. Research on Optimization of Airport Cargo Business Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(3): 651-660. |
[9] | Feng Li, Ying Wei. Product Decisions in Presence of Social Learning and Reference Point Effect [J]. Journal of System Simulation, 2022, 34(2): 234-246. |
[10] | Qirui Li, Xinyi Peng. Job Scheduling and Simulation in Cloud Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(2): 258-268. |
[11] | Qi Xiaolong, Yang Xuguang. Time-varying Output Formation Tracking Control of Discrete-time Heterogeneous Multi-agent Systems [J]. Journal of System Simulation, 2022, 34(1): 36-44. |
[12] | Zhao Zheng, Hu Li, Qian Yuanyuan, Jin Hui, Jia Aiping. Research on Optimal Allocation Method of Aircraft Towing Rules Based on Multi-agent [J]. Journal of System Simulation, 2022, 34(1): 113-125. |
[13] | Wu Xi, Meng Xianglin, Yang Jingyu. Study on Next-generation Strategic Wargame System [J]. Journal of System Simulation, 2021, 33(9): 2017-2024. |
[14] | He Xiaoyuan, Guo Shengming, Wu Lin, Li Dong, Xu Xiao, Li Li. Modeling Research of Cognition Behavior for Intelligent Wargaming [J]. Journal of System Simulation, 2021, 33(9): 2037-2047. |
[15] | Cong Jiping, Cui Lijie, Ding Gang, Ren Bo. Simulation on Aviation Maintenance Support System Based on Goal-driven [J]. Journal of System Simulation, 2021, 33(9): 2157-2165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||